找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Advances in the Theory of System Decoupling; Rubens Gon?alves Salsa Junior,Fai Ma Book 2021 Springer Nature Switzerland AG 2021 Linear sys

[復(fù)制鏈接]
樓主: lutein
11#
發(fā)表于 2025-3-23 11:04:57 | 只看該作者
12#
發(fā)表于 2025-3-23 14:08:57 | 只看該作者
Linear Systems and Configuration-Space Decoupling Techniquesupling techniques. Coordinate decoupling is the process of simultaneously diagonalizing the coefficient matrices of a dynamical system. The main objective of this chapter is to provide an overview of configuration-space decoupling techniques. Three decoupling algorithms are provided and eleven examples are supplemented.
13#
發(fā)表于 2025-3-23 18:03:43 | 只看該作者
14#
發(fā)表于 2025-3-23 22:29:14 | 只看該作者
15#
發(fā)表于 2025-3-24 03:33:18 | 只看該作者
16#
發(fā)表于 2025-3-24 08:20:05 | 只看該作者
César Fernández-de-las-Pe?as,Kimberly Bensenystem. This process of decoupling the equation of motion of a dynamical system is the time-honored procedure termed modal analysis. In general, damping is not classical and thus passive linear systems cannot be decoupled by modal analysis. This chapter shows how classical modal analysis can be exten
17#
發(fā)表于 2025-3-24 14:03:17 | 只看該作者
18#
發(fā)表于 2025-3-24 17:24:27 | 只看該作者
19#
發(fā)表于 2025-3-24 22:38:30 | 只看該作者
Decoupling of Linear Systems by Phase Synchronizationositive-definiteness. Systems possessing distinct, repeated, or defective eigenvalues are addressed. An algorithm for decoupling via phase synchronization is provided. Seven examples are supplied for illustration.
20#
發(fā)表于 2025-3-24 23:51:37 | 只看該作者
Selected Applicationsons include: computation of invariant of motion, derivation of a canonical form of the equation of motion, characterization of oscillatory behavior in free vibration and modal reduction of a system under base excitation. Several illustrative examples are supplied for theoretical developments.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-17 09:18
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
柳林县| 肥乡县| 南康市| 新平| 临夏县| 通化市| 阳新县| 庄浪县| 布拖县| 饶平县| 佛冈县| 正宁县| 克山县| 茶陵县| 靖边县| 抚顺县| 兰考县| 资源县| 玉林市| 师宗县| 高清| 淳安县| 桃源县| 井研县| 洮南市| 丹棱县| 邵阳县| 临江市| 邯郸县| 芦溪县| 龙门县| 治县。| 江安县| 平远县| 贵溪市| 张家口市| 兴国县| 沁源县| 和田县| 西乌| 塘沽区|