找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Advances in the Theory of Numbers; Proceedings of the T Ay?e Alaca,?aban Alaca,Kenneth S. Williams Conference proceedings 2015 Springer Sci

[復(fù)制鏈接]
樓主: Tamoxifen
21#
發(fā)表于 2025-3-25 04:57:43 | 只看該作者
Some Remarks on Automorphy and the Sato-Tate Conjecture,We present an informal account of the evolution of the Sato-Tate conjecture and describe some recent work of the authors that it gave rise to.
22#
發(fā)表于 2025-3-25 09:30:58 | 只看該作者
The Breuil-Schneider Conjecture: A Survey,This note is a survey of the Breuil-Schneider conjecture, based on the authors 30?min talk at the 13th conference of the Canadian Number Theory Association (CNTA XIII) held at Carleton University, June 16–20, 2014. We give an overview of the problem, and describe certain recent developments by the author and others.
23#
發(fā)表于 2025-3-25 13:47:11 | 只看該作者
,A Prime Analogue of Roth’s Theorem in Function Fields,or non-zero elements .?=?(..,?..,?..) of . satisfying .. + .. + ..?=?0, let . denote the maximal cardinality of a set . which contains no non-trivial solution of . with ..?∈?..?(1?≤?.?≤?3). By applying the polynomial Hardy-Littlewood circle method, we prove that ..
24#
發(fā)表于 2025-3-25 19:19:10 | 只看該作者
25#
發(fā)表于 2025-3-25 23:28:41 | 只看該作者
Current Chinese Economic Report Seriesor non-zero elements .?=?(..,?..,?..) of . satisfying .. + .. + ..?=?0, let . denote the maximal cardinality of a set . which contains no non-trivial solution of . with ..?∈?..?(1?≤?.?≤?3). By applying the polynomial Hardy-Littlewood circle method, we prove that ..
26#
發(fā)表于 2025-3-26 03:58:48 | 只看該作者
27#
發(fā)表于 2025-3-26 07:42:50 | 只看該作者
978-1-4939-4991-5Springer Science+Business Media New York 2015
28#
發(fā)表于 2025-3-26 10:22:13 | 只看該作者
Ay?e Alaca,?aban Alaca,Kenneth S. WilliamsCollects research papers devoted to topics in different areas of current research in number theory together in one volume.Presents concise surveys of leading edge number theory research.Provides surve
29#
發(fā)表于 2025-3-26 14:14:53 | 只看該作者
Fields Institute Communicationshttp://image.papertrans.cn/a/image/150270.jpg
30#
發(fā)表于 2025-3-26 18:12:22 | 只看該作者
Regional Logistics Market in China,, the Witt construction and a completion process. We show that the transposition of the perfection process at the real archimedean place is identical to the “dequantization” process and yields Viro’s tropical real hyperfield .. Then, we prove that the archimedean Witt construction in the context of
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 03:23
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
巴东县| 苍溪县| 惠安县| 图木舒克市| 洞头县| 隆德县| 永德县| 扶风县| 色达县| 鲁甸县| 垦利县| 怀化市| 城口县| 富宁县| 淅川县| 洞头县| 石嘴山市| 文山县| 翼城县| 林甸县| 湖州市| 乌恰县| 双流县| 黄大仙区| 威信县| 闻喜县| 论坛| 五华县| 荃湾区| 佛学| 瓦房店市| 琼结县| 祁连县| 无为县| 南部县| 多伦县| 长兴县| 寿光市| 大名县| 克东县| 神池县|