找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Advances in Visual Computing; 15th International S George Bebis,Zhaozheng Yin,George Baciu Conference proceedings 2020 Springer Nature Swit

[復(fù)制鏈接]
樓主: incompatible
41#
發(fā)表于 2025-3-28 15:46:06 | 只看該作者
42#
發(fā)表于 2025-3-28 21:20:30 | 只看該作者
43#
發(fā)表于 2025-3-29 02:23:55 | 只看該作者
rcGAN: Learning a Generative Model for Arbitrary Size Image Generationage used to train our model. Our two-steps method uses a randomly conditioned convolutional generative adversarial network (rcGAN) trained on patches obtained from a reference image. It can capture the reference image internal patches distribution and then produce high-quality samples that share wit
44#
發(fā)表于 2025-3-29 04:31:54 | 只看該作者
Sketch-Inspector: A Deep Mixture Model for High-Quality Sketch Generation of Catsen made in previous studies in this area, a relatively high proportion of the generated figures are too abstract to recognize, which illustrates that AIs fail to learn the general pattern of the target object when drawing. This paper posits that supervising the process of stroke generation can lead
45#
發(fā)表于 2025-3-29 10:37:04 | 只看該作者
Depthwise Separable Convolutions and Variational Dropout within the context of YOLOv3n solutions. However, these algorithms often impose prohibitive levels of memory and computational overhead, especially in resource-constrained environments. In this study, we combine the state-of-the-art object-detection model YOLOv3 with depthwise separable convolutions and variational dropout in
46#
發(fā)表于 2025-3-29 13:58:09 | 只看該作者
Uncertainty Estimates in Deep Generative Models Using Gaussian Processesliability of the outcome of machine learning systems. Gaussian processes are widely known as a method in machine learning which provides estimates of uncertainty. Moreover, Gaussian processes have been shown to be equivalent to deep neural networks with infinitely wide layers. This equivalence sugge
47#
發(fā)表于 2025-3-29 17:54:29 | 只看該作者
Towards Optimal Ship Navigation Using Image Processing Plotting Aid (ARPA) and Electronic Chart Display and Information System (ECDIS). Location map, marine traffic, geographical conditions, and obstacles in a region can be monitored by these technologies. The obstacles may vary from icebergs and ice blocks to islands, debris, rocks, or other vessels i
48#
發(fā)表于 2025-3-29 20:09:17 | 只看該作者
49#
發(fā)表于 2025-3-30 03:51:24 | 只看該作者
Pixel-Level Corrosion Detection on Metal Constructions by Fusion of Deep Learning Semantic and Conto approaches tend to place bounding boxes around the defected region which is not adequate both for structural analysis and prefabrication, an innovative construction concept which reduces maintenance cost, time and improves safety. In this paper, we apply three semantic segmentation-oriented deep le
50#
發(fā)表于 2025-3-30 05:40:36 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-24 08:10
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
滨州市| 张家口市| 高陵县| 保靖县| 神木县| 佛山市| 深州市| 肃宁县| 乐山市| 伊春市| 芜湖市| 延寿县| 鞍山市| 永仁县| 盘锦市| 思茅市| 新疆| 新宁县| 迭部县| 永城市| 嘉义县| 威海市| 曲靖市| 佛学| 尤溪县| 广南县| 绿春县| 黄龙县| 叶城县| 敦煌市| 聊城市| 原阳县| 仲巴县| 剑川县| 安乡县| 宜黄县| 民县| 南昌市| 黎川县| 南丰县| 开平市|