找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Advances in Visual Computing; 13th International S George Bebis,Richard Boyle,Jonathan Ventura Conference proceedings 2018 Springer Nature

[復制鏈接]
查看: 53567|回復: 54
樓主
發(fā)表于 2025-3-21 16:32:50 | 只看該作者 |倒序瀏覽 |閱讀模式
期刊全稱Advances in Visual Computing
期刊簡稱13th International S
影響因子2023George Bebis,Richard Boyle,Jonathan Ventura
視頻videohttp://file.papertrans.cn/151/150117/150117.mp4
學科分類Lecture Notes in Computer Science
圖書封面Titlebook: Advances in Visual Computing; 13th International S George Bebis,Richard Boyle,Jonathan Ventura Conference proceedings 2018 Springer Nature
影響因子.This book constitutes the refereed proceedings of the 13th International Symposium on Visual Computing, ISVC 2018, held in Las Vegas, NV, USA in November 2018...The total of 66 papers presented in this volume was carefully reviewed and selected from 91 submissions. The papers are organized in topical sections named: ST: computational bioimaging; computer graphics; visual surveillance; pattern recognition; vitrual reality; deep learning; motion and tracking; visualization; object detection and recognition; applications; segmentation; and ST: intelligent transportation systems.?.
Pindex Conference proceedings 2018
The information of publication is updating

書目名稱Advances in Visual Computing影響因子(影響力)




書目名稱Advances in Visual Computing影響因子(影響力)學科排名




書目名稱Advances in Visual Computing網絡公開度




書目名稱Advances in Visual Computing網絡公開度學科排名




書目名稱Advances in Visual Computing被引頻次




書目名稱Advances in Visual Computing被引頻次學科排名




書目名稱Advances in Visual Computing年度引用




書目名稱Advances in Visual Computing年度引用學科排名




書目名稱Advances in Visual Computing讀者反饋




書目名稱Advances in Visual Computing讀者反饋學科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權限
沙發(fā)
發(fā)表于 2025-3-22 00:17:13 | 只看該作者
板凳
發(fā)表于 2025-3-22 01:05:39 | 只看該作者
地板
發(fā)表于 2025-3-22 08:28:11 | 只看該作者
Robust Incremental Hidden Conditional Random Fields for Human Action Recognitiona robust mixture of Student’s .-distributions is imposed as a regularizer to the parameters of the model. The experimental results on human action recognition show that RI-HCRF successfully estimates the number of hidden states and outperforms all state-of-the-art models.
5#
發(fā)表于 2025-3-22 10:08:30 | 只看該作者
Conservation and the Common Good,ety of automatic registration methods, and evaluate algorithm performance in the context of serial image registration. We find that intensity-based methods are consistent in performance, while feature-based methods can perform better, but are also more variable in success. Ultimately a combined algo
6#
發(fā)表于 2025-3-22 14:50:37 | 只看該作者
Rare and Endangered Plants in Chinauomotor control of its eyes, head, and four limbs to perform tasks involving the foveation and visual pursuit of target objects coupled with visually-guided reaching actions to intercept the moving targets.
7#
發(fā)表于 2025-3-22 20:58:32 | 只看該作者
Cristiana Nunes,Paulina Faria,Nuno Garciastage, which outperforms state-of-the-art results concerning the trade-off between accuracy and dimensionality of the final video representation. Also, the relevance analysis allows to increase the video data interpretability, by ranking trajectory-aligned descriptors according to their importance t
8#
發(fā)表于 2025-3-22 21:54:10 | 只看該作者
Cristiana Nunes,Paulina Faria,Nuno Garciaa robust mixture of Student’s .-distributions is imposed as a regularizer to the parameters of the model. The experimental results on human action recognition show that RI-HCRF successfully estimates the number of hidden states and outperforms all state-of-the-art models.
9#
發(fā)表于 2025-3-23 03:54:11 | 只看該作者
Rotation Symmetry Object Classification Using Structure Constrained Convolutional Neural Network: rotation invariant convolution (RI-CONV) layer and symmetry structure constrained convolution (SSC-CONV) layer. Proposed network learns structural characteristic from image samples regardless of their appearance diversity. Evaluation is conducted on 32,000 images (after augmentation) of our rotation symmetry classification data set.
10#
發(fā)表于 2025-3-23 07:58:34 | 只看該作者
A Hough Space Feature for Vehicle Detection angle. To evaluate the performance of the proposed feature, a Neural Network pattern recognition classifier is employed to classify vehicle images and non-vehicle samples. The success rate is validated via various imaging environment (lighting, distance to camera, view angle, and incompleteness) for different vehicle models.
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-18 08:47
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
东平县| 淳安县| 正阳县| 綦江县| 济宁市| 麟游县| 泰和县| 阿勒泰市| 唐海县| 慈溪市| 青河县| 咸阳市| 兰西县| 左云县| 连南| 策勒县| 鲁山县| 乌鲁木齐市| 同仁县| 磐安县| 阿尔山市| 洛南县| 柯坪县| 赤水市| 拜泉县| 安达市| 宁波市| 平遥县| 皋兰县| 光山县| 兰坪| 朝阳区| 内丘县| 台南市| 海安县| 察雅县| 阳城县| 皮山县| 济阳县| 离岛区| 崇文区|