找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Advances in Topology and Their Interdisciplinary Applications; Santanu Acharjee Book 2023 The Editor(s) (if applicable) and The Author(s),

[復(fù)制鏈接]
樓主: Definite
11#
發(fā)表于 2025-3-23 11:20:59 | 只看該作者
12#
發(fā)表于 2025-3-23 14:35:36 | 只看該作者
13#
發(fā)表于 2025-3-23 22:05:19 | 只看該作者
-Rung Orthopair Fuzzy Points and Applications to ,-Rung Orthopair Fuzzy Topological Spaces and Pattfuzzy sets by using the concept of Choquet integral which is a non-linear continuous aggregation operator. Then, we give some applications on pattern recognition by using .-rung orthopair fuzzy points and the Dice similarity measure. Moreover, we introduce the concept of continuity of a function def
14#
發(fā)表于 2025-3-24 01:17:23 | 只看該作者
The Anxieties of Classical Political Economyty and lower semi-continuity, respectively. Admissibility of function space topology and convergence of net of sets are used as major tools towards achieving this goal. Topological properties of the solution sets of VVI and GVVI problems are also discussed.
15#
發(fā)表于 2025-3-24 03:04:55 | 只看該作者
16#
發(fā)表于 2025-3-24 09:26:24 | 只看該作者
Liliane Haegeman,Manuela Sch?nenbergerh crisp sets, to work in granular computing and thus, we restrict ourselves only to crisp set-based granular computing. At last, we discuss some feasible ideas from biology and microscopy, which may inspire the experts of granular computing to develop new theories based on crisp sets and realities of nature.
17#
發(fā)表于 2025-3-24 10:51:57 | 只看該作者
https://doi.org/10.1007/978-3-642-19068-1ined between two .-rung orthopair fuzzy topological spaces at a .-rung orthopair fuzzy point and define the concept of convergence of nets of .-rung orthopair fuzzy points in a .-rung orthopair fuzzy topological space. Finally, we study the relationship between continuity of functions and convergence of nets.
18#
發(fā)表于 2025-3-24 15:19:40 | 只看該作者
19#
發(fā)表于 2025-3-24 21:55:05 | 只看該作者
20#
發(fā)表于 2025-3-25 01:56:51 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 11:10
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
奉化市| 正阳县| 偏关县| 盘锦市| 深水埗区| 阿克苏市| 峨山| 淳安县| 阿巴嘎旗| 县级市| 平远县| 元谋县| 双城市| 黑水县| 阿坝| 金阳县| 横峰县| 临泽县| 忻州市| 漠河县| 咸丰县| 田阳县| 曲周县| 睢宁县| 昭平县| 嘉鱼县| 凤冈县| 威远县| 星座| 大悟县| 邵东县| 建始县| 西充县| 南阳市| 万盛区| 鸡东县| 武威市| 武穴市| 葵青区| 波密县| 阿克苏市|