找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Advances in Swarm Intelligence; First International Ying Tan,Yuhui Shi,Kay Chen Tan Conference proceedings 2010 The Editor(s) (if applicab

[復(fù)制鏈接]
樓主: 小故障
51#
發(fā)表于 2025-3-30 12:11:59 | 只看該作者
52#
發(fā)表于 2025-3-30 13:09:07 | 只看該作者
Gender-Hierarchy Particle Swarm Optimizer Based on Punishmenttimal solution. Especially, a novel recognition approach, called general recognition, is presented to furthermore improve the performance of PSO. Experimental results show that the proposed algorithm shows better behaviors as compared to the standard PSO, tribes-based PSO and GH-PSO with tribes.
53#
發(fā)表于 2025-3-30 16:50:52 | 只看該作者
Tidal Marshes as Outwelling/Pulsing Systemsing boundedness one confirms a dominant oscillating behavior of both populations dynamics performance. However, the oscillating frequency results to be unknown. This inconvenience is overcome by considering a specific recurrence equation, in the max-plus algebra.
54#
發(fā)表于 2025-3-30 23:00:48 | 只看該作者
55#
發(fā)表于 2025-3-31 02:47:37 | 只看該作者
56#
發(fā)表于 2025-3-31 08:59:09 | 只看該作者
57#
發(fā)表于 2025-3-31 12:56:45 | 只看該作者
Biomechanics Modeling and Concepts, may be influenced due to load imbalance. In this paper we proposed approach try to further optimize this scheduling strategy by using quantum-behaved particle swarm optimization. And compared with SSAC and MINMIN in the simulation experiment; results indicate that our proposed technique is a better solution for reducing the makespan considerably.
58#
發(fā)表于 2025-3-31 14:48:55 | 只看該作者
Simulating Human Social Behaviorsjobs in each group and the sequence of groups. Three different lower bounds are developed to evaluate the performance of the proposed PSO algorithm. Limited numerical results show that the proposed PSO algorithm performs well for all test problems.
59#
發(fā)表于 2025-3-31 18:57:40 | 只看該作者
60#
發(fā)表于 2025-3-31 23:22:11 | 只看該作者
Paolo Cattorini,Roberto Mordaccing is realized through a statistical mapping, between the parameter set and the KNOB, learned by a radial basis function neural network (RBFNN) simulation model. In this way, KNOB provides an easy way to tune PSO directly by its parameter setting. A simple application of KNOB to promote is presented to verify the mechanism of KNOB.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-18 16:49
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
印江| 义乌市| 西平县| 大邑县| 峨眉山市| 大兴区| 依安县| 五原县| 都兰县| 乌兰县| 渭源县| 乐昌市| 靖安县| 河东区| 定远县| 济宁市| 武义县| 深水埗区| 公安县| 万安县| 奇台县| 平和县| 达孜县| 金山区| 崇州市| 油尖旺区| 新绛县| 应城市| 榆中县| 兴安盟| 德庆县| 资阳市| 门源| 平江县| 子洲县| 栾城县| 滨州市| 新兴县| 禄丰县| 剑川县| 邓州市|