找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪(fǎng)問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Advances in Stochastic Simulation Methods; N. Balakrishnan,V. B. Melas,S. Ermakov Book 2000 Springer Science+Business Media New York 2000

[復(fù)制鏈接]
樓主: polysomnography
11#
發(fā)表于 2025-3-23 11:20:13 | 只看該作者
12#
發(fā)表于 2025-3-23 14:50:59 | 只看該作者
Christopher K. H. Koh,William J. Williamsch is to minimize the maximum integrated mean squared error of the fitted values, subject to an unbiasedness constraint. The maxima are taken over broad classes of departures from the `‘ideal’ model. The methods yield particularly simple treatments of otherwise intractable design problems. This poin
13#
發(fā)表于 2025-3-23 20:56:56 | 只看該作者
Life cycle maintenance management double exponential models and report on the efficiency changes in both types of designs when the nominal values of the parameters are misspecified..Our results show that while .-optimal designs may appear as a more rational criterion, .-optimal designs can be less sensitive to misspecification in t
14#
發(fā)表于 2025-3-23 22:56:28 | 只看該作者
15#
發(fā)表于 2025-3-24 03:53:23 | 只看該作者
https://doi.org/10.1007/978-1-4471-1837-4esigns (for . prime or a power of a prime), in the conventional sense of such designs as defined, for example, by Finney (1960, p73) or as displayed in the classic set of NBS tables (., .). Following a standard notation, we refer to these as .. designs, implying a division of the selected fraction i
16#
發(fā)表于 2025-3-24 09:28:09 | 只看該作者
https://doi.org/10.1007/978-1-4471-1837-4lues for . and are therefore . optimal. An exact optimal design can be seen as a choice of . points ..,…, .. out of a set .. Two sets will be considered in this paper: an interval. = .. = [.., ..]and a set. = .. ={..,…, ..}which consists of a finite number of candidate points. If the set .. is used
17#
發(fā)表于 2025-3-24 12:16:16 | 只看該作者
18#
發(fā)表于 2025-3-24 18:11:25 | 只看該作者
19#
發(fā)表于 2025-3-24 20:57:35 | 只看該作者
20#
發(fā)表于 2025-3-25 01:07:56 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-31 21:43
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
康平县| 大石桥市| 浏阳市| 雅安市| 徐闻县| 德化县| 儋州市| 南京市| 噶尔县| 抚松县| 正阳县| 尼木县| 滦南县| 廉江市| 米林县| 壶关县| 鄱阳县| 长沙市| 延庆县| 潮州市| 哈尔滨市| 郁南县| 建瓯市| 恩施市| 河源市| 德兴市| 车致| 萨嘎县| 玛多县| 沿河| 桂平市| 什邡市| 泰和县| 长子县| 灵台县| 许昌市| 平湖市| 沐川县| 潜山县| 茂名市| 陆河县|