找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Advances in Social Network Mining and Analysis; Second International Lee Giles,Marc Smith,Haizheng Zhang Conference proceedings 2010 The Ed

[復(fù)制鏈接]
查看: 47650|回復(fù): 38
樓主
發(fā)表于 2025-3-21 18:19:33 | 只看該作者 |倒序瀏覽 |閱讀模式
期刊全稱Advances in Social Network Mining and Analysis
期刊簡稱Second International
影響因子2023Lee Giles,Marc Smith,Haizheng Zhang
視頻videohttp://file.papertrans.cn/150/149731/149731.mp4
發(fā)行地址up-to-date results.fast-track conference proceedings.state-of-the-art report
學(xué)科分類Lecture Notes in Computer Science
圖書封面Titlebook: Advances in Social Network Mining and Analysis; Second International Lee Giles,Marc Smith,Haizheng Zhang Conference proceedings 2010 The Ed
影響因子This year’s volume of Advances in Social Network Analysis contains the p- ceedings for the Second International Workshop on Social Network Analysis (SNAKDD 2008). The annual workshop co-locates with the ACM SIGKDD - ternational Conference on Knowledge Discovery and Data Mining (KDD). The second SNAKDD workshop was held with KDD 2008 and received more than 32 submissions on social network mining and analysis topics. We accepted 11 regular papers and 8 short papers. Seven of the papers are included in this volume. In recent years, social network research has advanced signi?cantly, thanks to the prevalence of the online social websites and instant messaging systems as well as the availability of a variety of large-scale o?ine social network systems. These social network systems are usually characterized by the complex network structures and rich accompanying contextual information. Researchers are - creasingly interested in addressing a wide range of challenges residing in these disparate social network systems, including identifying common static topol- ical properties and dynamic properties during the formation and evolution of these social networks, and how contextual information c
Pindex Conference proceedings 2010
The information of publication is updating

書目名稱Advances in Social Network Mining and Analysis影響因子(影響力)




書目名稱Advances in Social Network Mining and Analysis影響因子(影響力)學(xué)科排名




書目名稱Advances in Social Network Mining and Analysis網(wǎng)絡(luò)公開度




書目名稱Advances in Social Network Mining and Analysis網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Advances in Social Network Mining and Analysis被引頻次




書目名稱Advances in Social Network Mining and Analysis被引頻次學(xué)科排名




書目名稱Advances in Social Network Mining and Analysis年度引用




書目名稱Advances in Social Network Mining and Analysis年度引用學(xué)科排名




書目名稱Advances in Social Network Mining and Analysis讀者反饋




書目名稱Advances in Social Network Mining and Analysis讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 20:47:12 | 只看該作者
Christopher Frauenberger,Winfried Ritschld produce values for these statistics which are both stable and close to the observed ones. Stable statistics can also be used to identify phase transitions, since any change in a normally stable statistic indicates a substantial change in the nature of the communication dynamics. We describe model
板凳
發(fā)表于 2025-3-22 01:20:36 | 只看該作者
地板
發(fā)表于 2025-3-22 05:00:54 | 只看該作者
5#
發(fā)表于 2025-3-22 10:37:32 | 只看該作者
0302-9743 allenges residing in these disparate social network systems, including identifying common static topol- ical properties and dynamic properties during the formation and evolution of these social networks, and how contextual information c978-3-642-14928-3978-3-642-14929-0Series ISSN 0302-9743 Series E-ISSN 1611-3349
6#
發(fā)表于 2025-3-22 14:39:28 | 只看該作者
7#
發(fā)表于 2025-3-22 18:56:54 | 只看該作者
Communication Dynamics of Blog Networks,ld produce values for these statistics which are both stable and close to the observed ones. Stable statistics can also be used to identify phase transitions, since any change in a normally stable statistic indicates a substantial change in the nature of the communication dynamics. We describe model
8#
發(fā)表于 2025-3-22 22:39:08 | 只看該作者
Finding Spread Blockers in Dynamic Networks,ustering coefficient seems to be a good indicator, while its static version performs worse than the random ranking. This provides simple practical and locally computable algorithms for identifying key blockers in a network.
9#
發(fā)表于 2025-3-23 04:47:58 | 只看該作者
Social Network Mining with Nonparametric Relational Models,ionships between entities and it performs an interpretable cluster analysis. We demonstrate the performance of IHRMs with three social network applications. We perform community analysis on the Sampson’s monastery data and perform link analysis on the Bernard & Killworth data. Finally we apply IHRMs
10#
發(fā)表于 2025-3-23 09:07:42 | 只看該作者
Conference proceedings 2010ers are - creasingly interested in addressing a wide range of challenges residing in these disparate social network systems, including identifying common static topol- ical properties and dynamic properties during the formation and evolution of these social networks, and how contextual information c
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-24 16:07
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
江安县| 饶平县| 新竹县| 自贡市| 五大连池市| 响水县| 香港| 清镇市| 浏阳市| 伽师县| 邹平县| 莆田市| 洛浦县| 楚雄市| 林州市| 大新县| 滦南县| 金秀| 蒲江县| 大渡口区| 常山县| 辛集市| 永兴县| 志丹县| 视频| 苏尼特左旗| 页游| 泰来县| 焉耆| 五峰| 额尔古纳市| 正安县| 沅陵县| 安泽县| 金乡县| 外汇| 通河县| 长海县| 连云港市| 孝昌县| 札达县|