找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Advances in Self-Organizing Maps, Learning Vector Quantization, Clustering and Data Visualization; Dedicated to the Mem Jan Faigl,Madalina

[復(fù)制鏈接]
查看: 46860|回復(fù): 46
樓主
發(fā)表于 2025-3-21 17:39:52 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
期刊全稱Advances in Self-Organizing Maps, Learning Vector Quantization, Clustering and Data Visualization
期刊簡稱Dedicated to the Mem
影響因子2023Jan Faigl,Madalina Olteanu,Jan Drchal
視頻videohttp://file.papertrans.cn/150/149651/149651.mp4
發(fā)行地址Provides recent research in self-organizing maps, learning vector quantization, clustering, and data visualization.Presents computational aspects and applications for data mining and visualization.Con
學(xué)科分類Lecture Notes in Networks and Systems
圖書封面Titlebook: Advances in Self-Organizing Maps, Learning Vector Quantization, Clustering and Data Visualization; Dedicated to the Mem Jan Faigl,Madalina
影響因子.In this collection, the reader can ?nd recent advancements in self-organizing maps (SOMs) and learning vector quantization (LVQ), including progressive ideas on exploiting features of parallel computing. The collection is balanced in presenting novel theoretical contributions with applied results in traditional ?elds of SOMs, such as visualization problems and data analysis. Besides, the collection further includes less traditional deployments in trajectory clustering and recent results on exploiting quantum computation. The presented book is worth interest to data analysis and machine learning researchers and practitioners, speci?cally those interested in being updated with current developments in unsupervised learning, data visualization, and self-organization..
Pindex Conference proceedings 2022
The information of publication is updating

書目名稱Advances in Self-Organizing Maps, Learning Vector Quantization, Clustering and Data Visualization影響因子(影響力)




書目名稱Advances in Self-Organizing Maps, Learning Vector Quantization, Clustering and Data Visualization影響因子(影響力)學(xué)科排名




書目名稱Advances in Self-Organizing Maps, Learning Vector Quantization, Clustering and Data Visualization網(wǎng)絡(luò)公開度




書目名稱Advances in Self-Organizing Maps, Learning Vector Quantization, Clustering and Data Visualization網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Advances in Self-Organizing Maps, Learning Vector Quantization, Clustering and Data Visualization被引頻次




書目名稱Advances in Self-Organizing Maps, Learning Vector Quantization, Clustering and Data Visualization被引頻次學(xué)科排名




書目名稱Advances in Self-Organizing Maps, Learning Vector Quantization, Clustering and Data Visualization年度引用




書目名稱Advances in Self-Organizing Maps, Learning Vector Quantization, Clustering and Data Visualization年度引用學(xué)科排名




書目名稱Advances in Self-Organizing Maps, Learning Vector Quantization, Clustering and Data Visualization讀者反饋




書目名稱Advances in Self-Organizing Maps, Learning Vector Quantization, Clustering and Data Visualization讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:27:32 | 只看該作者
板凳
發(fā)表于 2025-3-22 01:00:27 | 只看該作者
地板
發(fā)表于 2025-3-22 05:24:55 | 只看該作者
5#
發(fā)表于 2025-3-22 12:34:14 | 只看該作者
https://doi.org/10.1007/978-1-4419-1123-0of empirical inference: the hierarchical agglomerative clustering and the computation of minimum enclosing balls. It produces .-nets whose cardinalities are smaller than those obtained with state-of-the-art methods.
6#
發(fā)表于 2025-3-22 13:34:38 | 只看該作者
7#
發(fā)表于 2025-3-22 20:38:26 | 只看該作者
Modification of the Classification-by-Component Predictor Using Dempster-Shafer-Theory,Dempster-Shafer-theory, which in the original approach was mentioned to be implicitly realized but not explained deeply. Thus, we redefine the CbC keeping the main aspects of positive and negative reasoning about detected components/features and relate this to the Demspster-Shafer-theory of evidence.
8#
發(fā)表于 2025-3-22 22:55:19 | 只看該作者
,Inferring ,-nets of?Finite Sets in?a?RKHS,of empirical inference: the hierarchical agglomerative clustering and the computation of minimum enclosing balls. It produces .-nets whose cardinalities are smaller than those obtained with state-of-the-art methods.
9#
發(fā)表于 2025-3-23 03:32:06 | 只看該作者
,Steps Forward to?Quantum Learning Vector Quantization for?Classification Learning on?a?Theoretical t quantum computing patterns and quantum hardware. For this purpose, we introduce a new computing pattern for prototype updates and possible measurement strategies in the quantum computing regime. Further, we consider numerical errors which are induced by the theoretical model and their impact on the learning process.
10#
發(fā)表于 2025-3-23 08:23:41 | 只看該作者
Jan Faigl,Madalina Olteanu,Jan DrchalProvides recent research in self-organizing maps, learning vector quantization, clustering, and data visualization.Presents computational aspects and applications for data mining and visualization.Con
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 08:13
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
克拉玛依市| 民和| 来安县| 泾源县| 红安县| 翼城县| 崇礼县| 南部县| 苍山县| 汪清县| 班玛县| 辉县市| 习水县| 广宗县| 沂水县| 西乌珠穆沁旗| 湖口县| 麻栗坡县| 通辽市| 招远市| 邢台市| 额敏县| 津南区| 米林县| 德保县| 琼结县| 万源市| 浮山县| 新平| 和田县| 南康市| 徐闻县| 南平市| 巴马| 保德县| 镇雄县| 冷水江市| 志丹县| 伊吾县| 徐闻县| 民县|