找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Advances in Robot Learning; 8th European Workhop Jeremy Wyatt,John Demiris Conference proceedings 2000 Springer-Verlag Berlin Heidelberg 20

[復(fù)制鏈接]
樓主: 日月等
11#
發(fā)表于 2025-3-23 12:01:05 | 只看該作者
Egon Krause,Yurii I. Shokin,Nina Shokinaul properties such as the ability to generalize or to be noise-tolerant. Since the process to evolve such controllers in the real-world is very time-consuming, one usually uses simulators to speed up the evolutionary process. By doing so a new problem arises: The controllers evolved in the simulator
12#
發(fā)表于 2025-3-23 16:37:22 | 只看該作者
13#
發(fā)表于 2025-3-23 20:59:14 | 只看該作者
Alexey Androsov,J?rn Behrens,Sergey Danilovic programming (ILP). The method repeatedly applies induction from examples collected by using previously induced results. This method is effective in a situation where we can only give an inaccurate teacher. We examined this method by applying it to robot learning, which resulted in increasing the
14#
發(fā)表于 2025-3-24 00:25:36 | 只看該作者
Kwangcheol Shin,Ajith Abraham,Sang Yong Hanamically updated as information comes to hand during the learning process. Excessive variance of these estimators can be problematic, resulting in uneven or unstable learning, or even making effective learning impossible. Estimator variance is usually managed only indirectly, by selecting global lea
15#
發(fā)表于 2025-3-24 02:32:31 | 只看該作者
16#
發(fā)表于 2025-3-24 10:24:51 | 只看該作者
17#
發(fā)表于 2025-3-24 12:32:38 | 只看該作者
18#
發(fā)表于 2025-3-24 18:48:56 | 只看該作者
19#
發(fā)表于 2025-3-24 20:30:47 | 只看該作者
Learning a Navigation Task in Changing Environments by Multi-task Reinforcement Learning,re of the robot. Finally, we investigate the capabilities of the learning algorithm with respect to the transfer of information between related reinforcement learning tasks, like navigation tasks in different environments. It is hoped that this method will lead to a speed-up in reinforcement learnin
20#
發(fā)表于 2025-3-25 00:34:02 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-14 17:29
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
三穗县| 屏东市| 株洲县| 岳普湖县| 庆阳市| 利津县| 宁南县| 游戏| 桐乡市| 即墨市| 诏安县| 泽州县| 若尔盖县| 光山县| 旅游| 桐乡市| 东阿县| 冀州市| 囊谦县| 根河市| 荣昌县| 崇文区| 蕲春县| 拜城县| 河北区| 甘泉县| 喀什市| 越西县| 祁东县| 华安县| 巴林右旗| 财经| 新营市| 神木县| 钟山县| 威海市| 太原市| 平南县| 宜都市| 平远县| 徐汇区|