找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Advances in Robot Kinematics 2022; Oscar Altuzarra,Andrés Kecskeméthy Conference proceedings 2022 The Editor(s) (if applicable) and The Au

[復(fù)制鏈接]
查看: 31967|回復(fù): 64
樓主
發(fā)表于 2025-3-21 20:03:56 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
期刊全稱Advances in Robot Kinematics 2022
影響因子2023Oscar Altuzarra,Andrés Kecskeméthy
視頻videohttp://file.papertrans.cn/150/149610/149610.mp4
發(fā)行地址Includes the most recent results in robot kinematics.Reports on the latest scientific achievements on robot kinematics provided by the prominent researchers.Covers a wide spectrum of areas with the fo
學(xué)科分類Springer Proceedings in Advanced Robotics
圖書封面Titlebook: Advances in Robot Kinematics 2022;  Oscar Altuzarra,Andrés Kecskeméthy Conference proceedings 2022 The Editor(s) (if applicable) and The Au
影響因子.This book reports on the latest scientific achievements on robot kinematics provided by the prominent researchers participating in the 18th International Symposium on Advances in Robot Kinematics ARK2022, organized in the University of the Basque Country, Bilbao, Spain. It is of interest to researchers wanting to know more about the latest topics and methods in the fields of the kinematics, control and design of robotic systems. ..The book brings together 53 peer-reviewed papers. These cover the full range of robotic systems, including serial, parallel, flexible mechanisms, and cable-driven manipulators, and tackle problems such as: kinematic analysis of robots, robot modelling and simulation, theories and methods in kinematics, singularity analysis, kinematic problems in parallel robots, redundant robots, cable robots, kinematics in biological systems, flexible parallel manipulators, humanoid robots and humanoid subsystems..
Pindex Conference proceedings 2022
The information of publication is updating

書目名稱Advances in Robot Kinematics 2022影響因子(影響力)




書目名稱Advances in Robot Kinematics 2022影響因子(影響力)學(xué)科排名




書目名稱Advances in Robot Kinematics 2022網(wǎng)絡(luò)公開度




書目名稱Advances in Robot Kinematics 2022網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Advances in Robot Kinematics 2022被引頻次




書目名稱Advances in Robot Kinematics 2022被引頻次學(xué)科排名




書目名稱Advances in Robot Kinematics 2022年度引用




書目名稱Advances in Robot Kinematics 2022年度引用學(xué)科排名




書目名稱Advances in Robot Kinematics 2022讀者反饋




書目名稱Advances in Robot Kinematics 2022讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:15:45 | 只看該作者
On Origami-Like Quasi-mechanisms with?an?Antiprismatic Skeletonl, we generalize Wunderlich’s trisymmetric sandglass polyhedron in analogy to the generalization of the Jessen orthogonal icosahedron to Milka’s extreme birosette structures, with the additional feature that the belt is developable into the plane as the Kresling pattern. Within the resulting 2-dimen
板凳
發(fā)表于 2025-3-22 01:03:26 | 只看該作者
Line-Point Constraints and?Robot Surgeryd to robot surgery where a straight, rigid cannula is inserted into the patient through a trocar. A surgical robot manipulates the cannula so the insertion point is fixed. The space of displacements determined by a pair of these constraints is also studied briefly. This correspond to a pair cannulas
地板
發(fā)表于 2025-3-22 08:37:15 | 只看該作者
5#
發(fā)表于 2025-3-22 10:42:47 | 只看該作者
6#
發(fā)表于 2025-3-22 16:26:10 | 只看該作者
7#
發(fā)表于 2025-3-22 19:42:14 | 只看該作者
Geometry Based Analysis of?3R Serial Robotstanding the inverse kinematic model (IKM) as well as the singularities in the joint space and in the workspace. In this article, we revisit the geometrical interpretation of the IKM with conics. The conditions of getting different conics and their implication on singularities are discussed and the o
8#
發(fā)表于 2025-3-22 22:00:24 | 只看該作者
9#
發(fā)表于 2025-3-23 04:59:21 | 只看該作者
6R Linkages with?Hidden Singularitiesas its instantaneous mobility changes, but in contrast to c-space singularities, like bifurcations or cusps, these kinematic singularities are not reflected in the c-space. They are therefore called .. Very few publications have addressed the analysis of hidden singularities. Recent research, employ
10#
發(fā)表于 2025-3-23 09:08:55 | 只看該作者
Best Operation Regions in?a?Planar Cable Driven Systemopic force at all the discrete points within the manipulator’s workspace. The proposed method is based on the obtention of four vectorial subspaces in which a new mathematical closed-form solution proposed by the authors is applied in order to obtain the maximum isotropic force generated for each ve
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 21:25
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
长乐市| 宁河县| 扎赉特旗| 江安县| 固始县| 临夏市| 巴彦淖尔市| 苏尼特左旗| 石景山区| 武乡县| 微博| 电白县| 博乐市| 大悟县| 本溪| 九台市| 临城县| 栾川县| 灵石县| 金乡县| 彩票| 新巴尔虎右旗| 二连浩特市| 通许县| 勐海县| 马鞍山市| 兴文县| 辉县市| 恩施市| 竹北市| 旌德县| 四子王旗| 东台市| 柘城县| 郓城县| 攀枝花市| 南陵县| 南丰县| 铅山县| 巴彦淖尔市| 霍邱县|