找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Advances in Robot Kinematics; J. Lenar?i?,M. M. Stani?i? Book 2000 Springer Science+Business Media Dordrecht 2000 automation.biomechanics.

[復(fù)制鏈接]
樓主: 贊美
31#
發(fā)表于 2025-3-26 21:03:42 | 只看該作者
32#
發(fā)表于 2025-3-27 04:31:26 | 只看該作者
On Isotropic Sets of Points in the Plane. Application to the Design of Robot Architecturesy connecting together these points, we define families of isotropic manipulators. This paper is devoted to planar manipulators, the concepts being currently extended to their spatial counterparts. Furthermore, only manipulators with revolute joints are considered here.
33#
發(fā)表于 2025-3-27 05:50:41 | 只看該作者
34#
發(fā)表于 2025-3-27 10:15:33 | 只看該作者
35#
發(fā)表于 2025-3-27 15:00:03 | 只看該作者
Lecture Notes in Computer Science structure of industrial robotic systems and mechanisms. These dyads may be combined serially to form a complex open chain or, when connected back to the fixed link, may be joined so as to form a closed chain; e.g. a platform or mechanism. Finally, we present a numerical design case study which demonstrate the utility of the synthesis technique.
36#
發(fā)表于 2025-3-27 20:27:41 | 只看該作者
37#
發(fā)表于 2025-3-27 23:41:06 | 只看該作者
Unit Quaternion and CRV: Complementary Non-Singular Representations of Rigid-Body Orientationuseful for interpolating between orientations. Rotations about fixed axes, the minimum angular displacement transformations between body orientations shown by Juttler (1998) to be great circles in quaternion space, are shown here to be a family of planar circles in CRV space.
38#
發(fā)表于 2025-3-28 05:13:19 | 只看該作者
39#
發(fā)表于 2025-3-28 07:31:27 | 只看該作者
Kinematic Synthesis of Planar Platforms with RPR, PRR, and RRR Chainsproblem is addressed through the use of constraint manifolds, the platform’s workspace defined in terms of planar quaternion coordinates. An example shows the synthesis of a platform via this methodology.
40#
發(fā)表于 2025-3-28 11:11:38 | 只看該作者
or a variety of purposes such as manipulation, manufacturing, automation, surgery, locomotion and biomechanics. The issues addressed are fundamentally kinematic in nature, including synthesis, calibration, redundancy, force control, dexterity, inverse and forward kinematics, kinematic singularities,
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-11-2 06:41
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
泰兴市| 高密市| 阿拉善盟| 云和县| 炉霍县| 尚义县| 汽车| 安丘市| 普宁市| 图木舒克市| 玉田县| 依兰县| 延寿县| 通州区| 都安| 井研县| 滨海县| 锦屏县| 靖宇县| 通渭县| 泉州市| 丹棱县| 卢龙县| 阳城县| 阳新县| 宁河县| 普宁市| 宾川县| 武安市| 东城区| 昌图县| 南城县| 贵德县| 镇沅| 尖扎县| 深水埗区| 安泽县| 霍州市| 定兴县| 磐石市| 高平市|