找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Advances in Robot Kinematics; J. Lenar?i?,M. M. Stani?i? Book 2000 Springer Science+Business Media Dordrecht 2000 automation.biomechanics.

[復(fù)制鏈接]
樓主: 贊美
31#
發(fā)表于 2025-3-26 21:03:42 | 只看該作者
32#
發(fā)表于 2025-3-27 04:31:26 | 只看該作者
On Isotropic Sets of Points in the Plane. Application to the Design of Robot Architecturesy connecting together these points, we define families of isotropic manipulators. This paper is devoted to planar manipulators, the concepts being currently extended to their spatial counterparts. Furthermore, only manipulators with revolute joints are considered here.
33#
發(fā)表于 2025-3-27 05:50:41 | 只看該作者
34#
發(fā)表于 2025-3-27 10:15:33 | 只看該作者
35#
發(fā)表于 2025-3-27 15:00:03 | 只看該作者
Lecture Notes in Computer Science structure of industrial robotic systems and mechanisms. These dyads may be combined serially to form a complex open chain or, when connected back to the fixed link, may be joined so as to form a closed chain; e.g. a platform or mechanism. Finally, we present a numerical design case study which demonstrate the utility of the synthesis technique.
36#
發(fā)表于 2025-3-27 20:27:41 | 只看該作者
37#
發(fā)表于 2025-3-27 23:41:06 | 只看該作者
Unit Quaternion and CRV: Complementary Non-Singular Representations of Rigid-Body Orientationuseful for interpolating between orientations. Rotations about fixed axes, the minimum angular displacement transformations between body orientations shown by Juttler (1998) to be great circles in quaternion space, are shown here to be a family of planar circles in CRV space.
38#
發(fā)表于 2025-3-28 05:13:19 | 只看該作者
39#
發(fā)表于 2025-3-28 07:31:27 | 只看該作者
Kinematic Synthesis of Planar Platforms with RPR, PRR, and RRR Chainsproblem is addressed through the use of constraint manifolds, the platform’s workspace defined in terms of planar quaternion coordinates. An example shows the synthesis of a platform via this methodology.
40#
發(fā)表于 2025-3-28 11:11:38 | 只看該作者
or a variety of purposes such as manipulation, manufacturing, automation, surgery, locomotion and biomechanics. The issues addressed are fundamentally kinematic in nature, including synthesis, calibration, redundancy, force control, dexterity, inverse and forward kinematics, kinematic singularities,
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-11-2 21:38
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
榆林市| 瑞金市| 天水市| 凤凰县| 盐边县| 海门市| 黄浦区| 楚雄市| 陵水| 林西县| 玛纳斯县| 盐津县| 蒙自县| 清苑县| 陆川县| 蒙城县| 涿鹿县| 福泉市| 龙川县| 调兵山市| 通榆县| 皋兰县| 平阳县| 湟源县| 长寿区| 公主岭市| 社会| 临澧县| 襄汾县| 鄱阳县| 鹿泉市| 湖口县| 惠东县| 康保县| 抚宁县| 通州市| 南昌市| 盈江县| 浦城县| 九江县| 滁州市|