找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Advances in Rings, Modules and Factorizations; Graz, Austria, Febru Alberto Facchini,Marco Fontana,Bruce Olberding Conference proceedings 2

[復(fù)制鏈接]
樓主: Madison
21#
發(fā)表于 2025-3-25 05:31:48 | 只看該作者
22#
發(fā)表于 2025-3-25 10:31:00 | 只看該作者
23#
發(fā)表于 2025-3-25 14:51:50 | 只看該作者
24#
發(fā)表于 2025-3-25 16:35:44 | 只看該作者
A Survey on the Local Invertibility of Ideals in Commutative Rings,Let . be an integral domain. We give an overview on connections between the (.)-finite character property of . (i.e., each nonzero element of . is contained in finitely many (.)-maximal ideals) and problems of local invertibility of ideals.
25#
發(fā)表于 2025-3-25 22:28:38 | 只看該作者
,Idempotence and Divisoriality in?Prüfer-Like Domains,Let . be a Prüfer .-multiplication domain, where . is a semistar operation on .. We show that certain ideal-theoretic properties related to idempotence and divisoriality hold in Prüfer domains, and we use the associated semistar Nagata ring of . to show that the natural counterparts of these properties also hold in ..
26#
發(fā)表于 2025-3-26 00:22:45 | 只看該作者
Classifying Modules in Add of a Class of Modules with Semilocal Endomorphism Rings,We present a dimension theory for modules in ., where . is a class of modules with semilocal endomorphism rings satisfying certain smallness conditions. For example, if . is the class of all finitely presented modules over a semilocal ring ., then we get cardinal invariants which describe pure projective .-modules up?to isomorphism.
27#
發(fā)表于 2025-3-26 06:38:06 | 只看該作者
,When Two Principal Star Operations Are?the?Same,We study when two fractional ideals of the same integral domain generate the same star operation.
28#
發(fā)表于 2025-3-26 09:06:00 | 只看該作者
29#
發(fā)表于 2025-3-26 15:02:32 | 只看該作者
https://doi.org/10.1007/978-3-030-43416-8multiplicative ideal theory; integer-valued polynomial; monoid; factorization; commutative ring; Prufer r
30#
發(fā)表于 2025-3-26 17:09:43 | 只看該作者
978-3-030-43418-2Springer Nature Switzerland AG 2020
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 04:16
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
盐源县| 曲周县| 周至县| 绵阳市| 永新县| 绥棱县| 内丘县| 荥阳市| 依安县| 南充市| 卓资县| 项城市| 禄劝| 揭西县| 肇源县| 大石桥市| 莎车县| 夏邑县| 昌图县| 永州市| 四子王旗| 义乌市| 正安县| 彭阳县| 离岛区| 五原县| 长乐市| 邻水| 镇沅| 东平县| 靖西县| 娄底市| 内黄县| 夹江县| 洛南县| 嘉黎县| 昭苏县| 武乡县| 厦门市| 宝丰县| 栾城县|