找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Advances in Real and Complex Analysis with Applications; Michael Ruzhansky,Yeol Je Cho,Iván Area Book 2017 Springer Nature Singapore Pte L

[復(fù)制鏈接]
樓主: 珍珠無
51#
發(fā)表于 2025-3-30 10:33:06 | 只看該作者
Bloch Mappings on Bounded Symmetric Domains,holomorphic Bloch mappings on finite dimensional bounded symmetric domains. As an application, we give a lower bound of the Bloch constant for these locally biholomorphic Bloch mappings. Finally, we show that there exist no isometric composition operators from the space . of bounded and holomorphic
52#
發(fā)表于 2025-3-30 13:28:10 | 只看該作者
Certain Class of Meromorphically Multivalent Functions Defined by a Differential Operator,.. We obtain coefficient estimates, distortion theorem, radius of convexity and closure theorems for the class .. The familiar concept of neighborhoods of analytic functions is also extended and applied to the functions considered here.
53#
發(fā)表于 2025-3-30 20:24:05 | 只看該作者
Bivariate Symmetric Discrete Orthogonal Polynomials,itions to have admissible, potentially self-adjoint partial difference equations of hypergeometric type having orthogonal polynomial solutions. For these solutions, we give explicitly the matrix coefficients of the three-term recurrence relations they satisfy. Finally, conditions in order to have sy
54#
發(fā)表于 2025-3-30 21:29:21 | 只看該作者
55#
發(fā)表于 2025-3-31 03:29:41 | 只看該作者
56#
發(fā)表于 2025-3-31 07:26:55 | 只看該作者
,Quadratic Reciprocity and Some “Non-differentiable” Functions,mber Theory 1, 107–116, 2004), Murty and Pacelli gave an instructive proof of the quadratic reciprocity via the theta transformation formula and Gerver (Amer J Math 92, 33–55, 1970) [.] was the first to give a proof of differentiability/non-differentiability of Riemann’s function. The aim here is to
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-11-1 05:54
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
富川| 汝南县| 台中县| 定兴县| 普陀区| 保山市| 霍州市| 仁怀市| 会同县| 兰溪市| 应用必备| 津南区| 南郑县| 洛川县| 苏州市| 巩留县| 乌兰浩特市| 栾城县| 翁牛特旗| 石河子市| 德兴市| 汉中市| 伊春市| 花垣县| 河西区| 临沭县| 白玉县| 平定县| 云霄县| 民乐县| 涞水县| 鲜城| 屏南县| 修武县| 南丰县| 上饶市| 凤台县| 宾阳县| 陆良县| 青海省| 罗城|