找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Advances in Principal Component Analysis; Research and Develop Ganesh R. Naik Book 2018 Springer Nature Singapore Pte Ltd. 2018 Principal C

[復(fù)制鏈接]
樓主: Cyclone
11#
發(fā)表于 2025-3-23 11:30:47 | 只看該作者
Reproduction of Paramyxoviruses,a significant role in the big-data era, when large datasets are often outlier corrupted. In this chapter, we present the theoretical foundations of L1-PCA, optimal and state-of-the-art approximate algorithms for its implementation, and some numerical studies that demonstrate its favorable performanc
12#
發(fā)表于 2025-3-23 15:09:46 | 只看該作者
13#
發(fā)表于 2025-3-23 18:59:38 | 只看該作者
Damage and Fault Detection of Structures Using Principal Component Analysis and Hypothesis Testing,the intractable problem of Israel. No satisfactory Middle East policy will be possible for the West until the problem of Israel’s future is permanently settled; but even then the extremely difficult problem of achieving satisfactory relations with Arab nationalism will still have to be dealt with.
14#
發(fā)表于 2025-3-23 23:06:39 | 只看該作者
PCA, Kernel PCA and Dimensionality Reduction in Hyperspectral Images,ne hand, iron-stone deposits and, on the other hand, fast-flowing streams which were required from the fifteenth century onwards to operate bellows and forge-hammers used in the process of production.
15#
發(fā)表于 2025-3-24 02:53:25 | 只看該作者
16#
發(fā)表于 2025-3-24 08:56:30 | 只看該作者
Principal Component Analysis Techniques for Visualization of Volumetric Data,Overview:
17#
發(fā)表于 2025-3-24 10:45:40 | 只看該作者
Application and Extension of PCA Concepts to Blind Unmixing of Hyperspectral Data with Intra-class Overview:
18#
發(fā)表于 2025-3-24 16:57:01 | 只看該作者
https://doi.org/10.1007/978-1-4613-3009-7rther helps overcome the model inconsistency and improve interpretability when applied to high-dimensional data. Model formulations and solution strategies of ePCA and sparse ePCA are discussed with real-world applications.
19#
發(fā)表于 2025-3-24 22:21:01 | 只看該作者
Book 2018lems related to dimensional reduction techniques and their extensions in detail. Bringing together research results previously scattered throughout many scientific journals papers worldwide, the book presents them in a methodologically unified form. Offering vital insights into the subject matter in
20#
發(fā)表于 2025-3-24 23:11:13 | 只看該作者
ied form. Offering vital insights into the subject matter in self-contained chapters that balance the theory and concrete applications, and especially focusing on open problems, it is essential reading for all researchers and practitioners with an interest in PCA.. . .978-981-13-4934-8978-981-10-6704-4
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 10:25
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
梁平县| 红桥区| 平顺县| 江油市| 卢龙县| 紫金县| 古浪县| 虞城县| 南郑县| 自贡市| 法库县| 平利县| 松溪县| 双江| 泸定县| 仙居县| 丽江市| 无锡市| 班戈县| 永新县| 微博| 泾源县| 德清县| 大足县| 阿克陶县| 正镶白旗| 新龙县| 凤阳县| 石棉县| 绥芬河市| 乐至县| 云安县| 邻水| 江北区| 图木舒克市| 邯郸市| 天水市| 孟村| 新竹市| 永新县| 晴隆县|