找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Advances in Phase Space Analysis of Partial Differential Equations; In Honor of Ferrucci Antonio Bove,Daniele Del Santo,M.K. Venkatesha Mur

[復(fù)制鏈接]
樓主: 相持不下
21#
發(fā)表于 2025-3-25 05:14:27 | 只看該作者
Complexification in the Energiewendecs of its hamiltonian flow which imply: 1. The operator .. is essentially self-adjoint and the propagators .. are bounded between (conveniently related) generalized Sobolev spaces. 2. The propagators .. are generalized Fourier integral operators.
22#
發(fā)表于 2025-3-25 09:31:41 | 只看該作者
Forward Look at Research Perspectives,ectly the classical decay estimates with sharp bounds. Although the computations are elementary and the definition of the Oseen kernels goes back to the 1911 paper of this author, we were not able to find the simple explicit expression below in the literature.
23#
發(fā)表于 2025-3-25 12:22:41 | 只看該作者
24#
發(fā)表于 2025-3-25 18:05:47 | 只看該作者
25#
發(fā)表于 2025-3-25 22:29:40 | 只看該作者
Advances in Phase Space Analysis of Partial Differential Equations978-0-8176-4861-9Series ISSN 1421-1750 Series E-ISSN 2374-0280
26#
發(fā)表于 2025-3-26 00:28:49 | 只看該作者
Dania A. El-Kebbe,Christoph Dannemost every . with respect to the perimeter measure of ., some tangent of . at . is a vertical halfspace. This is a partial extension of a theorem of Franchi-Serapioni-Serra Cassano in step 2 Carnot groups.
27#
發(fā)表于 2025-3-26 07:26:29 | 只看該作者
Sophie Baudic,Gérard H. E. Duchampive index on H. in terms of the heat kernel. That characterization can be extended to positive indexes using Bernstein inequalities. As a corollary we obtain a proof of refined Sobolev inequalities in . spaces.
28#
發(fā)表于 2025-3-26 12:24:55 | 只看該作者
Franco Ruzzenenti,Brian D. Fathperbolic symmetrizer, its relationships with the concept of Bezout matrix, its perturbations which originate the so–called quasi-symmetrizer and its applications to Cauchy problems for linear weakly hyperbolic equations.
29#
發(fā)表于 2025-3-26 13:12:32 | 只看該作者
30#
發(fā)表于 2025-3-26 17:13:02 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 19:07
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
陇川县| 慈利县| 巩留县| 东源县| 台中市| 蕉岭县| 陇南市| 连云港市| 安福县| 廊坊市| 黄石市| 武义县| 噶尔县| 长海县| 广安市| 瓦房店市| 龙江县| 志丹县| 土默特左旗| 长垣县| 阿克苏市| 平度市| 文昌市| 家居| 保定市| 诏安县| 北碚区| 乐至县| 祁连县| 芮城县| 敦化市| 益阳市| 星子县| 辰溪县| 惠州市| 临邑县| 扶沟县| 绥宁县| 淳安县| 丰台区| 洛川县|