找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Advances in Neural Networks - ISNN 2004; International Sympos Fu-Liang Yin,Jun Wang,Chengan Guo Conference proceedings 2004 Springer-Verlag

[復(fù)制鏈接]
樓主: ANNOY
41#
發(fā)表于 2025-3-28 16:53:46 | 只看該作者
978-3-540-22841-7Springer-Verlag Berlin Heidelberg 2004
42#
發(fā)表于 2025-3-28 19:58:31 | 只看該作者
https://doi.org/10.1057/9781137016423In this paper, we discuss delayed neural networks, investigating the global exponential stability of their equilibria. Delay- dependent criteria ensuring global stability are given. A numerical example illustrating the dependence of stability on the delays is presented.
43#
發(fā)表于 2025-3-29 01:43:54 | 只看該作者
44#
發(fā)表于 2025-3-29 05:21:20 | 只看該作者
Zakaria Amidu Issahaku,Keshav Lall MaharjanA system of .-units neural network with coupled cells is investigated, the local stability of null solution is considered, and the parameter values of the periodic solution bifurcation are given.
45#
發(fā)表于 2025-3-29 08:58:49 | 只看該作者
46#
發(fā)表于 2025-3-29 12:21:14 | 只看該作者
Communities and Technologies 2007Almost sure stability and instability of stochastic Cohen–Grossberg neural networks are addressed in this paper. Our results can be used as theoretic guidance to stabilize neural networks in practical applications when stochastic noise is take into consideration.
47#
發(fā)表于 2025-3-29 15:41:57 | 只看該作者
Peter Pericles Trifonas,Effie BalomenosSome novel criteria are obtained for checking the absolute stability of the equilibrium point for bidirectional associative memory networks with distributed delays, where the activation functions only need to be partially Lipschitz continuous, but not bounded or differentiable.
48#
發(fā)表于 2025-3-29 21:48:21 | 只看該作者
Advances in Neural Networks - ISNN 2004978-3-540-28647-9Series ISSN 0302-9743 Series E-ISSN 1611-3349
49#
發(fā)表于 2025-3-30 03:39:04 | 只看該作者
Re-mapping the Ideological Battleground,nder the Orthogonal polynomials basis and certain assumptions of activation functions in the neural network, the upper bounds on the degree of approximation are obtained in the class of functions considered in this paper. The order of approximation .. being dimension, . the number of hidden neurons, and . the natural number.
50#
發(fā)表于 2025-3-30 07:20:44 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-14 10:59
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
广州市| 盘山县| 上高县| 榆社县| 郧西县| 延寿县| 天等县| 靖边县| 铅山县| 苍南县| 清河县| 那曲县| 万盛区| 哈密市| 通道| 三穗县| 东乡族自治县| 甘谷县| 宝丰县| 凉山| 许昌县| 濉溪县| 大关县| 鹿邑县| 富川| 禹城市| 鱼台县| 徐水县| 莒南县| 沛县| 奇台县| 崇义县| 石林| 韩城市| 沂水县| 嵊州市| 张家港市| 六枝特区| 池州市| 宝山区| 濮阳市|