找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Advances in Neural Networks - ISNN 2006; Third International Jun Wang,Zhang Yi,Hujun Yin Conference proceedings 2006 Springer-Verlag Berli

[復(fù)制鏈接]
樓主: Chylomicron
41#
發(fā)表于 2025-3-28 17:18:03 | 只看該作者
42#
發(fā)表于 2025-3-28 21:05:50 | 只看該作者
43#
發(fā)表于 2025-3-29 02:10:40 | 只看該作者
Qianbin Chen,Weixiao Meng,Liqiang Zhaocognitive processes. However, several current models incorporated learning algorithms that apparently have questionable descriptive validity or qualitative plausibleness. The present research attempts to bridge this gap by identifying five critical issues overlooked by previous modeling research and
44#
發(fā)表于 2025-3-29 04:55:08 | 只看該作者
45#
發(fā)表于 2025-3-29 07:13:56 | 只看該作者
46#
發(fā)表于 2025-3-29 13:16:40 | 只看該作者
Yingjie Wang,Wei Luo,Changxiang Shenon of functions is developed by using integral transform. Using the developed representation, an approximation order estimation for the bell-shaped neural networks is obtained. The obtained result reveals that the approximation accurately of the bell-shaped neural networks depends not only on the nu
47#
發(fā)表于 2025-3-29 17:18:35 | 只看該作者
Terence R. Cannings,Sue G. Talleynsity or upper bound estimation on how a multivariate function can be approximated by the networks, and consequently, the essential approximation ability of networks cannot be revealed. In this paper, by establishing both upper and lower bound estimations on approximation order, the essential approx
48#
發(fā)表于 2025-3-29 22:04:40 | 只看該作者
Communications in an era of networksis a linear combination of wavelets, that can be updated during the networks training process. As a result the approximate error is significantly decreased. The BP algorithm and the QR decomposition based training method for the proposed WNN is derived. The obtained results indicate that this new ty
49#
發(fā)表于 2025-3-30 00:52:02 | 只看該作者
50#
發(fā)表于 2025-3-30 04:39:42 | 只看該作者
Online university degree programmesof diffusion operator and the techniques of inequality, we investigate positive invariant set, global exponential stability, and then obtain the exponential dissipativity of the neural networks under consideration. Our results can extend and improve earlier ones. An example is given to demonstrate t
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 18:52
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
竹溪县| 林芝县| 孟州市| SHOW| 田阳县| 武汉市| 江山市| 阳谷县| 太原市| 志丹县| 金寨县| 沁源县| 屏东市| 抚远县| 和田市| 冷水江市| 黑龙江省| 屯门区| 金沙县| 津南区| 资兴市| 延寿县| 云南省| 霍林郭勒市| 盐边县| 宁蒗| 荣成市| 府谷县| 黑山县| 马关县| 渭源县| 土默特右旗| 建德市| 同德县| 霍林郭勒市| 会同县| 始兴县| 红安县| 兴安县| 廉江市| 花垣县|