找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Advances in Neural Networks - ISNN 2004; International Sympos Fu-Liang Yin,Jun Wang,Chengan Guo Conference proceedings 2004 Springer-Verlag

[復(fù)制鏈接]
樓主: 使入伍
21#
發(fā)表于 2025-3-25 03:28:50 | 只看該作者
Wang Yuchen,Lu Jialiang,Philippe Martinsith moderate or low damping characteristics. Zeigler-Nichols(ZN) tuning methods are some of design approaches for finding PID controllers. Basilio and Matos(BM) pointed out a systematic way to design PID to meet transient performance specifications. As for the low-damping, slow-response plants, the
22#
發(fā)表于 2025-3-25 10:36:10 | 只看該作者
23#
發(fā)表于 2025-3-25 15:21:14 | 只看該作者
Qingqin Xu,Zhong Li,Teng Wu,Jie Zengmeasured disturbances, the calculated control policy based on the RNN model may not be optimal when applied to the actual process. Model prediction errors from previous runs are used to improve RNN model predictions for the current run. It is proved that the modified model errors are reduced from ru
24#
發(fā)表于 2025-3-25 16:49:12 | 只看該作者
https://doi.org/10.1007/978-3-031-34790-0A TDRNN controller for dynamic systems is proposed. A dynamic recurrent back-propagation algorithm is developed and the optimal adaptive learning rates are also proposed to guarantee the global convergence. Numeral experiments for controlling speeds of ultrasonic motors show that the TDRNN has good
25#
發(fā)表于 2025-3-25 22:16:07 | 只看該作者
Qingqin Xu,Zhong Li,Teng Wu,Jie Zengs minimized during training and most control action for disturbance rejection is finally performed by the rapid feedforward action of the network. The neural feedforward controller is independent of the model of plant and self-adaptive to time-variable system. The dynamic architecture of the neural
26#
發(fā)表于 2025-3-26 03:47:49 | 只看該作者
Yinhua Jia,Sen Wang,Jing Jin,Hang Longions. The conventional leaning controller based on CMAC can effectively reduce tracking error, but the CMAC control system can suddenly diverge after a long period of stable tracking, due to the influence of accumulative errors when tracking continuous variable signals such as sinusoidal wave. A new
27#
發(fā)表于 2025-3-26 05:13:05 | 只看該作者
28#
發(fā)表于 2025-3-26 12:25:01 | 只看該作者
29#
發(fā)表于 2025-3-26 14:44:55 | 只看該作者
Conference proceedings 2004teringand classi?cation; robotics and control; telecommunications; signal, image and time series processing; detection, diagnostics, and computer security; biomedical applications; and other applications) covering the whole spectrum of the recent neural network research and development. In addition
30#
發(fā)表于 2025-3-26 18:52:25 | 只看該作者
Neuro-Fuzzy Hybrid Position/Force Control for a Space Robot with Flexible Dual-Armslts than diffusive repartitioning schemes. We also demonstrate that a coarse starting mesh produces high quality load balancing, at a fraction of the cost required for a fine initial mesh. Finally, we show that the data redistribution overhead can be significantly reduced by applying our heuristic p
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-18 14:51
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
安义县| 永修县| 宁都县| 视频| 门源| 邵武市| 马公市| 凉山| 姚安县| 台湾省| 富蕴县| 泸州市| 阿城市| 师宗县| 洮南市| 克什克腾旗| 陆河县| 西华县| 宁武县| 漳州市| 合川市| 津南区| 疏勒县| 深州市| 荥阳市| 宕昌县| 体育| 长岭县| 万年县| 民乐县| 本溪市| 卢氏县| 广饶县| 盐城市| 宜春市| 诸城市| 公主岭市| 孟州市| 上思县| 荔波县| 太白县|