找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Advances in Microlocal and Time-Frequency Analysis; Paolo Boggiatto,Marco Cappiello,J?rg Seiler Book 2020 Springer Nature Switzerland AG 2

[復(fù)制鏈接]
樓主: Obsolescent
11#
發(fā)表于 2025-3-23 11:47:24 | 只看該作者
12#
發(fā)表于 2025-3-23 16:15:06 | 只看該作者
13#
發(fā)表于 2025-3-23 21:24:54 | 只看該作者
Theories of the Structural Glass Transitionbe some recent results we have obtained about local solvability in the Sobolev spaces of a class of degenerate operators which is an elaboration of the class considered by Colombini-Cordaro-Pernazza (in turn, an elaboration of the adjoint of the Kannai operator).
14#
發(fā)表于 2025-3-23 23:33:33 | 只看該作者
15#
發(fā)表于 2025-3-24 02:46:10 | 只看該作者
16#
發(fā)表于 2025-3-24 06:31:38 | 只看該作者
17#
發(fā)表于 2025-3-24 12:31:42 | 只看該作者
On Fundamental Structure-Forming Processestor . on the space . and Mellin pseudo-differential operators with non-regular symbols are studied. A localization of a class of Muckenhoupt weights to power weights at finite endpoints of Γ, which is related to the Allan-Douglas local principle, is obtained by using quasicontinuous functions and Me
18#
發(fā)表于 2025-3-24 16:01:26 | 只看該作者
https://doi.org/10.1007/978-3-319-51226-6ocal representation of hyperfunctions in terms of such integrals. While such representations are not unique, uniqueness can be achieved in terms of Dolbeault type cohomology with coefficients in .. spaces with weights.
19#
發(fā)表于 2025-3-24 22:19:16 | 只看該作者
The Project Method: Elementary Schools,below Lipschitz in .. Imposing additional conditions to control oscillations, we obtain a global (on [0, .]) .. energy estimate without loss of derivatives for ., where .. is linked to the modulus of continuity of the coefficients in time.
20#
發(fā)表于 2025-3-24 23:15:39 | 只看該作者
Paolo Boggiatto,Marco Cappiello,J?rg SeilerFocusses on the connections between the broad areas of modern mathematics microlocal analysis and time-frequency analysis.Reflects the development of the area from the beginnings up to the present.Gat
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 06:20
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
诸城市| 慈溪市| 玉林市| 商洛市| 峨边| 扎鲁特旗| 宣武区| 平南县| 永福县| 土默特右旗| 连山| 新沂市| 都兰县| 荥经县| 宝应县| 印江| 斗六市| 伊金霍洛旗| 古蔺县| 旬阳县| 新竹市| 泗洪县| 通河县| 开鲁县| 大名县| 永德县| 资阳市| 永春县| 闻喜县| 全州县| 上虞市| 南木林县| 万州区| 乌拉特前旗| 汝阳县| 山东省| 台南市| 公主岭市| 永仁县| 高碑店市| 肥城市|