找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Advances in Knowledge Discovery and Data Mining; 23rd Pacific-Asia Co Qiang Yang,Zhi-Hua Zhou,Sheng-Jun Huang Conference proceedings 2019 S

[復(fù)制鏈接]
查看: 53381|回復(fù): 56
樓主
發(fā)表于 2025-3-21 17:11:46 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
期刊全稱Advances in Knowledge Discovery and Data Mining
期刊簡(jiǎn)稱23rd Pacific-Asia Co
影響因子2023Qiang Yang,Zhi-Hua Zhou,Sheng-Jun Huang
視頻videohttp://file.papertrans.cn/149/148653/148653.mp4
學(xué)科分類Lecture Notes in Computer Science
圖書封面Titlebook: Advances in Knowledge Discovery and Data Mining; 23rd Pacific-Asia Co Qiang Yang,Zhi-Hua Zhou,Sheng-Jun Huang Conference proceedings 2019 S
影響因子.The three-volume set LNAI 11439, 11440, and 11441 constitutes the thoroughly refereed proceedings of the 23rd Pacific-Asia Conference on Knowledge Discovery and Data Mining, PAKDD 2019, held in Macau, China, in April 2019..The 137 full papers presented were carefully reviewed and selected from 542 submissions. The papers present?new ideas, original research results, and practical development experiences from all KDD related areas, including data mining, data warehousing, machine learning, artificial intelligence, databases, statistics, knowledge engineering, visualization, decision-making systems, and the emerging applications. They are organized in the following topical sections:?classification and supervised learning;?text and opinion mining;?spatio-temporal and stream data mining;?factor and tensor analysis;?healthcare, bioinformatics and related topics;?clustering and anomaly detection;?deep learning models and applications;?sequential pattern mining;?weakly supervised learning;?recommender system;?social network and graph mining;?data pre-processing and feature.selection;?representation learning and embedding;?mining unstructured and semi-structured data;?behavioral data mini
Pindex Conference proceedings 2019
The information of publication is updating

書目名稱Advances in Knowledge Discovery and Data Mining影響因子(影響力)




書目名稱Advances in Knowledge Discovery and Data Mining影響因子(影響力)學(xué)科排名




書目名稱Advances in Knowledge Discovery and Data Mining網(wǎng)絡(luò)公開度




書目名稱Advances in Knowledge Discovery and Data Mining網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Advances in Knowledge Discovery and Data Mining被引頻次




書目名稱Advances in Knowledge Discovery and Data Mining被引頻次學(xué)科排名




書目名稱Advances in Knowledge Discovery and Data Mining年度引用




書目名稱Advances in Knowledge Discovery and Data Mining年度引用學(xué)科排名




書目名稱Advances in Knowledge Discovery and Data Mining讀者反饋




書目名稱Advances in Knowledge Discovery and Data Mining讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 20:54:11 | 只看該作者
板凳
發(fā)表于 2025-3-22 01:02:20 | 只看該作者
地板
發(fā)表于 2025-3-22 07:37:06 | 只看該作者
https://doi.org/10.1007/978-3-030-04972-0nities. Existing QA studies assume that questions are raised by humans and answers are generated by machines. Nevertheless, in many real applications, machines are also required to determine human needs or perceive human states. In such scenarios, machines may proactively raise questions and humans
5#
發(fā)表于 2025-3-22 08:53:15 | 只看該作者
Coupling in UAV Cooperative Control, of the mainstream approaches to tackle this task. However, most of the existing studies focus on some specific kind of auxiliary data, which is usually platform- or domain- dependent. In existing works, the incorporation of auxiliary data has put limits on the applicability of the prediction model
6#
發(fā)表于 2025-3-22 14:53:00 | 只看該作者
https://doi.org/10.1007/978-3-319-74265-6 smart transportation systems. However, existing works are limited in fully utilizing multi-modal features. First, these models either include excessive data from weakly correlated regions or neglect the correlations with similar but spatially distant regions. Second, they incorporate the influence
7#
發(fā)表于 2025-3-22 18:55:02 | 只看該作者
https://doi.org/10.1007/978-3-319-74265-6with the equipment’s types. Proceeding from the fundamental features of load time series, we propose a method to identify electrical equipment from power load profiles accurately. Aiming to improve the classification accuracy and generalization performance of convolutional neural network (CNN), we c
8#
發(fā)表于 2025-3-22 23:42:07 | 只看該作者
9#
發(fā)表于 2025-3-23 03:33:35 | 只看該作者
https://doi.org/10.1007/978-3-319-74265-6er architecture, have achieved impressive progress in abstractive document summarization. However, the saliency of summary, which is one of the key factors for document summarization, still needs improvement. In this paper, we propose Topic Attentional Neural Network (TANN) which incorporates topic
10#
發(fā)表于 2025-3-23 05:50:25 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-16 20:14
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
丰都县| 镇坪县| 射阳县| 卢龙县| 长丰县| 安顺市| 大厂| 四子王旗| 浏阳市| 建湖县| 图木舒克市| 日土县| 民权县| 晋中市| 蒲江县| 台中县| 铅山县| 金秀| 江陵县| 阿鲁科尔沁旗| 新昌县| 祥云县| 洞头县| 建水县| 乌审旗| 莆田市| 称多县| 科技| 邹城市| 榆林市| 磴口县| 濮阳县| 紫云| 宁晋县| 虎林市| 白山市| 友谊县| 道孚县| 海淀区| 静乐县| 永春县|