找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Advances in Knowledge Discovery and Data Mining; 28th Pacific-Asia Co De-Nian Yang,Xing Xie,Jerry Chun-Wei Lin Conference proceedings 2024

[復(fù)制鏈接]
查看: 38802|回復(fù): 60
樓主
發(fā)表于 2025-3-21 17:07:52 | 只看該作者 |倒序瀏覽 |閱讀模式
期刊全稱Advances in Knowledge Discovery and Data Mining
期刊簡稱28th Pacific-Asia Co
影響因子2023De-Nian Yang,Xing Xie,Jerry Chun-Wei Lin
視頻videohttp://file.papertrans.cn/149/148641/148641.mp4
學(xué)科分類Lecture Notes in Computer Science
圖書封面Titlebook: Advances in Knowledge Discovery and Data Mining; 28th Pacific-Asia Co De-Nian Yang,Xing Xie,Jerry Chun-Wei Lin Conference proceedings 2024
影響因子.The 6-volume set LNAI 14645-14650 constitutes the proceedings of the?28th Pacific-Asia Conference on Knowledge Discovery and Data Mining, PAKDD 2024, which took place in Taipei, Taiwan, during May 7–10, 2024...The 177 papers presented in these proceedings were carefully reviewed and selected from 720 submissions. They deal with?new ideas, original research results, and practical development experiences from all KDD related areas, including data mining, data warehousing, machine learning, artificial intelligence, databases, statistics, knowledge engineering, big data technologies, and foundations..
Pindex Conference proceedings 2024
The information of publication is updating

書目名稱Advances in Knowledge Discovery and Data Mining影響因子(影響力)




書目名稱Advances in Knowledge Discovery and Data Mining影響因子(影響力)學(xué)科排名




書目名稱Advances in Knowledge Discovery and Data Mining網(wǎng)絡(luò)公開度




書目名稱Advances in Knowledge Discovery and Data Mining網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Advances in Knowledge Discovery and Data Mining被引頻次




書目名稱Advances in Knowledge Discovery and Data Mining被引頻次學(xué)科排名




書目名稱Advances in Knowledge Discovery and Data Mining年度引用




書目名稱Advances in Knowledge Discovery and Data Mining年度引用學(xué)科排名




書目名稱Advances in Knowledge Discovery and Data Mining讀者反饋




書目名稱Advances in Knowledge Discovery and Data Mining讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:14:54 | 只看該作者
978-981-97-2265-5The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Singapor
板凳
發(fā)表于 2025-3-22 03:49:08 | 只看該作者
Lecture Notes in Computer Sciencehttp://image.papertrans.cn/a/image/148641.jpg
地板
發(fā)表于 2025-3-22 05:55:49 | 只看該作者
5#
發(fā)表于 2025-3-22 11:40:49 | 只看該作者
P. M. Parizel,H. Tanghe,P. A. M. Hofman These schemes typically require setting parameters to appropriately model the problem at hand. We study the problem of parameter selection for applications that rely on simulations, where standard methods like grid search are computationally prohibitive. Our solution supports engineers in setting p
6#
發(fā)表于 2025-3-22 16:23:40 | 只看該作者
7#
發(fā)表于 2025-3-22 17:54:25 | 只看該作者
Magnetic Resonance Imaging of the Brain,erent modalities and obtain a unified representation in the same space. WCAN exploits an adversarial training method to add perturbations to text features to enhance model robustness. Specifically, we devise a weighted cross-modal aggregation (WCA) module that measures the distance between text, ima
8#
發(fā)表于 2025-3-22 23:24:06 | 只看該作者
9#
發(fā)表于 2025-3-23 02:27:56 | 只看該作者
James F. M. Meaney,John Sheehan,Mathias Boose, especially from biased knowledge introduction. In this work, we propose KiProL, a knowledge-injected prompt learning framework to improve language generation and training efficiency. KiProL tackles ineffective learning and utilization of knowledge, reduces the biased knowledge introduction, as we
10#
發(fā)表于 2025-3-23 08:54:42 | 只看該作者
James F. M. Meaney,John Sheehanis challenge diverges from traditional VQA by requiring models to identify a bounding box in response to an image-question pair, aligning with Visual Grounding tasks. Existing VG approaches, when applied to GVQA, often necessitate external data or larger models for satisfactory results, leading to h
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-25 07:35
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
商洛市| 崇文区| 外汇| 唐河县| 无棣县| 扎鲁特旗| 岳普湖县| 明溪县| 蚌埠市| 萨嘎县| 周口市| 从江县| 舞钢市| 南川市| 南平市| 茂名市| 许昌市| 岱山县| 迁西县| 玉山县| 英吉沙县| 中阳县| 古丈县| 攀枝花市| 达尔| 富锦市| 呼和浩特市| 赤城县| 安国市| 岐山县| 剑阁县| 柳州市| 沽源县| 临沧市| 江油市| 小金县| 罗田县| 台中县| 驻马店市| 大冶市| 罗江县|