找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Advances in Information Retrieval; 46th European Confer Nazli Goharian,Nicola Tonellotto,Iadh Ounis Conference proceedings 2024 The Editor(

[復制鏈接]
查看: 19253|回復: 56
樓主
發(fā)表于 2025-3-21 19:52:32 | 只看該作者 |倒序瀏覽 |閱讀模式
期刊全稱Advances in Information Retrieval
期刊簡稱46th European Confer
影響因子2023Nazli Goharian,Nicola Tonellotto,Iadh Ounis
視頻videohttp://file.papertrans.cn/149/148375/148375.mp4
學科分類Lecture Notes in Computer Science
圖書封面Titlebook: Advances in Information Retrieval; 46th European Confer Nazli Goharian,Nicola Tonellotto,Iadh Ounis Conference proceedings 2024 The Editor(
影響因子The six-volume set LNCS 14608, 14609, 14609, 14610, 14611, 14612 and 14613 constitutes the refereed proceedings of the 46th European Conference on IR Research, ECIR 2024, held in Glasgow, UK, during March 24–28, 2024..The 57 full papers, 18 finding papers, 36 short papers, 26 IR4Good papers, 18 demonstration papers, 9 reproducibility papers, 8 doctoral consortium papers, and 15 invited CLEF papers were carefully reviewed and selected from 578 submissions. The accepted papers cover the state of the art in information retrieval focusing on user aspects, system and foundational aspects, machine learning, applications, evaluation, new social and technical challenges, and other topics of direct or indirect relevance to search.?.
Pindex Conference proceedings 2024
The information of publication is updating

書目名稱Advances in Information Retrieval影響因子(影響力)




書目名稱Advances in Information Retrieval影響因子(影響力)學科排名




書目名稱Advances in Information Retrieval網(wǎng)絡公開度




書目名稱Advances in Information Retrieval網(wǎng)絡公開度學科排名




書目名稱Advances in Information Retrieval被引頻次




書目名稱Advances in Information Retrieval被引頻次學科排名




書目名稱Advances in Information Retrieval年度引用




書目名稱Advances in Information Retrieval年度引用學科排名




書目名稱Advances in Information Retrieval讀者反饋




書目名稱Advances in Information Retrieval讀者反饋學科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

1票 100.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權限
沙發(fā)
發(fā)表于 2025-3-21 21:25:03 | 只看該作者
Rashmi Anoop Patil,Seeram Ramakrishnaing discarded in recommendation. These two challenges limit the effective representation of users and items by existing methods. Inspired by self-supervised learning to mine supervision signals from data, in this paper, we focus on exploring contrastive learning based on knowledge graph enhancement,
板凳
發(fā)表于 2025-3-22 00:55:09 | 只看該作者
https://doi.org/10.1007/978-981-19-9700-6l focus on humor. To bolster Mu2STS, we have developed the SHMH (WARNING: This paper contains meme samples that are offensive in nature.) (.) dataset, designed for detecting sarcasm and humor in memes written in the Hindi language, which is the first of its kind to the best of our knowledge. Our emp
地板
發(fā)表于 2025-3-22 07:36:47 | 只看該作者
Circularity Assessment: Macro to Nanos representative for the entire web according to a baseline retrieval system on the ClueWeb22. Focussing on the product review genre, we find that only a small portion of product reviews on the web uses affiliate marketing, but the majority of all search results do. Of all affiliate networks, Amazon
5#
發(fā)表于 2025-3-22 10:00:22 | 只看該作者
https://doi.org/10.1007/978-3-031-49479-6xtension of Memory Networks, a neural network architecture that harnesses external memory to encapsulate information present in lengthy sequential data. The use of memory networks in recommendation use-cases remains limited in practice owing to their high memory cost, large compute requirements and
6#
發(fā)表于 2025-3-22 14:18:55 | 只看該作者
Takuya Nakashima,Tsuyoshi Kawai waste compute resources by scoring documents that are not related to the query. In this work, we propose an alternative formulation of the document similarity graph. Rather than using document similarities, we propose a weighted bipartite graph that consists of both document nodes and query nodes.
7#
發(fā)表于 2025-3-22 17:37:51 | 只看該作者
Operation and Maintenance Issues,ficient unlearning method that can remove a client’s contribution without compromising the overall ranker effectiveness and without needing to retrain the global ranker from scratch. A key challenge is how to measure whether the model has unlearned the contributions from the client . that has reques
8#
發(fā)表于 2025-3-22 23:42:51 | 只看該作者
9#
發(fā)表于 2025-3-23 04:55:05 | 只看該作者
Yong Jin,Jing-Xu Zhu,Zhi-Qing Yuearning passage ranking querysets demonstrate significant improvements in shallow and full-scale models in low-latency scenarios. For example, when the latency limit is 25?ms per query, MonoBERT-Large (a cross-encoder based on a full-scale BERT model) is only able to achieve NDCG@10 of 0.431 on TREC
10#
發(fā)表于 2025-3-23 07:30:33 | 只看該作者
Safia El Messaoudi,Alain R. Thierryated by the potential efficacy of patients’ personal context and visual gestures, we propose a transformer-based multi-task, multi-modal intent-recognition, and medical concern summary generation (.) system. Furthermore, we propose a multitasking framework for intent recognition and medical concern
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-24 16:27
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
会宁县| 侯马市| 建阳市| 扬中市| 水富县| 景洪市| 增城市| 台江县| 宁化县| 阿拉尔市| 手游| 始兴县| 左权县| 本溪市| 共和县| 桐乡市| 昭平县| 深州市| 清远市| 彰化县| 衢州市| 关岭| 正阳县| 民乐县| 申扎县| 晋江市| 仁化县| 兴宁市| 南溪县| 襄垣县| 江永县| 遵义市| 濮阳县| 海南省| 北海市| 云南省| 南开区| 长白| 徐水县| 广昌县| 武冈市|