找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Advances in Harmonic Analysis and Operator Theory; The Stefan Samko Ann Alexandre Almeida,Luís Castro,Frank-Olme Speck Conference proceedin

[復(fù)制鏈接]
樓主: injurious
11#
發(fā)表于 2025-3-23 10:23:43 | 只看該作者
https://doi.org/10.1007/978-3-663-02375-3of operators to reduce their boundedness in grand grand Morrey spaces to the corresponding boundedness in Morrey spaces. As a result of this application, we obtain the boundedness of the Hardy-Littlewood maximal operator and Calderón–Zygmund operators in the framework of grand grand Morrey spaces.
12#
發(fā)表于 2025-3-23 14:47:59 | 只看該作者
13#
發(fā)表于 2025-3-23 20:08:05 | 只看該作者
14#
發(fā)表于 2025-3-23 23:08:46 | 只看該作者
15#
發(fā)表于 2025-3-24 05:18:20 | 只看該作者
16#
發(fā)表于 2025-3-24 08:50:38 | 只看該作者
17#
發(fā)表于 2025-3-24 13:09:41 | 只看該作者
Rupture of the Public and Private Domains,ypes of solutions of non-linear fractional differential equations. They include periodic sinks, attracting slow diverging trajectories (ASDT), attracting accelerator mode trajectories (AMT), chaotic attractors, and cascade of bifurcations type trajectories (CBTT). New features discovered include att
18#
發(fā)表于 2025-3-24 18:17:51 | 只看該作者
Rupture of the Public and Private Domains,ential operator . from one generalized Morrey spaces . to another . and from . to the weak space W . We also find conditions on . which ensure the Adams type boundedness of the . As applications of those results, the boundeness of the commutators of operators . on generalized Morrey spaces is also o
19#
發(fā)表于 2025-3-24 22:59:24 | 只看該作者
20#
發(fā)表于 2025-3-25 00:13:19 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-24 04:32
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
毕节市| 白水县| 瑞丽市| 宜宾市| 称多县| 天气| 湟源县| 霍林郭勒市| 昭通市| 连江县| 霍山县| 清新县| 黑水县| 大埔区| 漠河县| 修文县| 琼结县| 临西县| 正安县| 南郑县| 漯河市| 乐平市| 庆安县| 大邑县| 河源市| 托克托县| 会泽县| 临城县| 扎兰屯市| 青海省| 泰州市| 丹江口市| 密云县| 华安县| 西华县| 封开县| 双峰县| 沿河| 七台河市| 江陵县| 海南省|