找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Advances in Graph Neural Networks; Chuan Shi,Xiao Wang,Cheng Yang Book 2023 The Editor(s) (if applicable) and The Author(s), under exclusi

[復(fù)制鏈接]
查看: 33001|回復(fù): 45
樓主
發(fā)表于 2025-3-21 19:38:10 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
期刊全稱Advances in Graph Neural Networks
影響因子2023Chuan Shi,Xiao Wang,Cheng Yang
視頻videohttp://file.papertrans.cn/149/148146/148146.mp4
發(fā)行地址Introduces the foundations and frontiers of graph neural networks.Utilizes graph data to describe pairwise relations for real-world data from many different domains.Summarizes the basic concepts and t
學(xué)科分類Synthesis Lectures on Data Mining and Knowledge Discovery
圖書封面Titlebook: Advances in Graph Neural Networks;  Chuan Shi,Xiao Wang,Cheng Yang Book 2023 The Editor(s) (if applicable) and The Author(s), under exclusi
影響因子This book provides a comprehensive introduction to the foundations and frontiers of graph neural networks. In addition, the book introduces the basic concepts and definitions in graph representation learning and discusses the development of advanced graph representation learning methods with a focus on graph neural networks. The book providers researchers and practitioners with an understanding of the fundamental issues as well as a launch point for discussing the latest trends in the science. The authors emphasize several frontier aspects of graph neural networks and utilize graph data to describe pairwise relations for real-world data from many different domains, including social science, chemistry, and biology. Several frontiers of graph neural networks are introduced, which enable readers to acquire the needed techniques of advances in graph neural networks via theoretical models and real-world applications.?
Pindex Book 2023
The information of publication is updating

書目名稱Advances in Graph Neural Networks影響因子(影響力)




書目名稱Advances in Graph Neural Networks影響因子(影響力)學(xué)科排名




書目名稱Advances in Graph Neural Networks網(wǎng)絡(luò)公開度




書目名稱Advances in Graph Neural Networks網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Advances in Graph Neural Networks被引頻次




書目名稱Advances in Graph Neural Networks被引頻次學(xué)科排名




書目名稱Advances in Graph Neural Networks年度引用




書目名稱Advances in Graph Neural Networks年度引用學(xué)科排名




書目名稱Advances in Graph Neural Networks讀者反饋




書目名稱Advances in Graph Neural Networks讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

1票 100.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:13:59 | 只看該作者
Making Sense of the Smell of Bangladesh GCN, including GraphSAGE (with an inductive framework for unseen data), graph attention network (with the attention mechanism for aggregating neighbors), and heterogeneous graph attention network (with semantic-level attention for heterogeneous graphs).
板凳
發(fā)表于 2025-3-22 04:04:02 | 只看該作者
地板
發(fā)表于 2025-3-22 04:55:52 | 只看該作者
2151-0067 m many different domains.Summarizes the basic concepts and tThis book provides a comprehensive introduction to the foundations and frontiers of graph neural networks. In addition, the book introduces the basic concepts and definitions in graph representation learning and discusses the development of
5#
發(fā)表于 2025-3-22 12:09:27 | 只看該作者
Palgrave Studies in the History of Childhoodntal part of GNNs. In this chapter, we will introduce the message-passing functions of three representative homogeneous GNNs. Further, we show that most existing homogeneous GNNs can be unified as a closed-form framework, which may help the researchers understand and interpret the principles behind message-passing mechanism.
6#
發(fā)表于 2025-3-22 15:16:36 | 只看該作者
Palgrave Studies in the History of Childhood. In this chapter, we introduce three heterogeneous graph neural networks (HGNNs), including heterogeneous graph propagation network (hpn), distance encoding-based heterogeneous graph neural network (DHN), and self-supervised heterogeneous graph neural network with co-contrastive learning (HeCo).
7#
發(fā)表于 2025-3-22 20:36:23 | 只看該作者
8#
發(fā)表于 2025-3-22 23:41:25 | 只看該作者
9#
發(fā)表于 2025-3-23 02:12:30 | 只看該作者
10#
發(fā)表于 2025-3-23 06:48:46 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-23 14:39
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
竹北市| 甘德县| 定兴县| 梅州市| 东海县| 呼图壁县| 上栗县| 雅安市| 乐至县| 出国| 乾安县| 喀什市| 普洱| 普陀区| 河源市| 昭苏县| 张家口市| 沁源县| 瑞安市| 阿拉善左旗| 个旧市| 同仁县| 陈巴尔虎旗| 龙游县| 蒲江县| 宁晋县| 集安市| 洮南市| 黄梅县| 新乡县| 德昌县| 大同县| 库尔勒市| 论坛| 上饶县| 浏阳市| 资阳市| 焉耆| 遵化市| 天柱县| 马公市|