找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Advances in Functional Analysis and Fixed-Point Theory; An Interdisciplinary Bipan Hazarika,Santanu Acharjee,Dragan S. Djordjev Book 2024 T

[復(fù)制鏈接]
樓主: Clinical-Trial
21#
發(fā)表于 2025-3-25 04:29:09 | 只看該作者
https://doi.org/10.1007/978-94-011-2268-9 on Kohlenbach hyperbolic space (KHS) in this chapter. Furthermore, for two different forms of generalized non-expansive map (NM) on KHS, certain .-convergence and strong convergence theorems utilizing the altered iteration process are proved. Finally, we show how our outcomes can be applied to non-
22#
發(fā)表于 2025-3-25 08:46:54 | 只看該作者
23#
發(fā)表于 2025-3-25 15:18:03 | 只看該作者
Polyoxometalates and Coordination Polymers,logarithmic boundedness of sequences of real numbers are introduced and tried to investigate some relations between the .—strongly harmonically summability and .—statistical logarithmic convergence in this work. We also establish some connections between . and .. It is shown that if a sequence is bo
24#
發(fā)表于 2025-3-25 17:59:10 | 只看該作者
25#
發(fā)表于 2025-3-25 23:23:44 | 只看該作者
26#
發(fā)表于 2025-3-26 00:49:09 | 只看該作者
https://doi.org/10.1007/978-1-4613-2137-8h space then the adjoint operator . of . is defined as a bounded linear operator on the dual of . which is denoted by . and defined by . for all . and .. Let . and . generate a complex number . of the operator . defined on the domain .(.), which is denoted by .. Then . is called the resolvent operat
27#
發(fā)表于 2025-3-26 05:42:49 | 只看該作者
28#
發(fā)表于 2025-3-26 08:43:48 | 只看該作者
29#
發(fā)表于 2025-3-26 14:26:22 | 只看該作者
David A. Robinson,John McK. Woollardmultivalued mappings . and ., we introduce multivalued generalized .-.-contraction mappings. We establish the existence of the best proximity point for such types of mappings in complete metric space. Moreover, we define multivalued generalized .-.-contraction pair of mappings and obtain best proxim
30#
發(fā)表于 2025-3-26 19:51:49 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 19:29
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
洛宁县| 广安市| 镇江市| 新余市| 磐安县| 井冈山市| 东乡族自治县| 肇东市| 会东县| 砚山县| 乐昌市| 周宁县| 阜城县| 时尚| 遂溪县| 兴和县| 潢川县| 克什克腾旗| 吉木乃县| 延庆县| 涟源市| 吴桥县| 东兴市| 凭祥市| 大渡口区| 抚顺县| 正安县| 达拉特旗| 曲麻莱县| 依兰县| 安阳县| 岳池县| 唐河县| 阳谷县| 麟游县| 大城县| 西贡区| 锡林郭勒盟| 化德县| 白银市| 吴桥县|