找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Advances in Dynamic Games; Theory, Applications Pierre Cardaliaguet,Ross Cressman Book 2013 Springer Science+Business Media New York 2013 H

[復(fù)制鏈接]
樓主: papyrus
31#
發(fā)表于 2025-3-26 23:01:04 | 只看該作者
32#
發(fā)表于 2025-3-27 03:53:20 | 只看該作者
Kerstin Stolzenberg,Krischan Heberleresource individuals live and interact during seasons of fixed lengths separated by winter periods. All individuals die at the end of the season and the size of the next generation is determined by the the consumer–resource interaction which took place during the season. Resource individuals are ass
33#
發(fā)表于 2025-3-27 08:20:25 | 只看該作者
https://doi.org/10.1007/978-3-662-61895-0pley value operator is chosen as the cooperative optimality principle. It is shown that components of Shapley value are absolutely continuous and, thus, differentiable functions along any admissible trajectory. The main result consists in the fact that if in any subgame along the cooperative traject
34#
發(fā)表于 2025-3-27 12:33:40 | 只看該作者
35#
發(fā)表于 2025-3-27 16:54:32 | 只看該作者
36#
發(fā)表于 2025-3-27 21:07:37 | 只看該作者
Kerstin Stolzenberg,Krischan Heberletion that the unconstrained penalized games have open loop Nash equilibria we give conditions on our model to ensure that there exists a subsequence of penalty parameters converging to infinity for which the corresponding sequence of solutions to the penalized games converges to an open loop Nash eq
37#
發(fā)表于 2025-3-27 22:28:16 | 只看該作者
Kerstin Stolzenberg,Krischan Heberlepayoff functions of a noncooperative game played by the steady-state values of the input signals. To achieve locally stable convergence to the resulting steady-state Nash equilibria, we introduce a non-model-based approach, where the players determine their actions based only on their own payoff val
38#
發(fā)表于 2025-3-28 05:33:57 | 只看該作者
39#
發(fā)表于 2025-3-28 08:25:20 | 只看該作者
40#
發(fā)表于 2025-3-28 10:30:37 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-19 18:12
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
孟州市| 玛沁县| 井冈山市| 将乐县| 仪陇县| 扎赉特旗| 濮阳县| 三原县| 奈曼旗| 阳信县| 璧山县| 青州市| 呼和浩特市| 翁源县| 崇州市| 阳西县| 温泉县| 灌云县| 德州市| 湟中县| 武邑县| 当涂县| 札达县| 永仁县| 共和县| 梅河口市| 晴隆县| 于都县| 金平| 谷城县| 定结县| 临海市| 广东省| 凌源市| 获嘉县| 三都| 中阳县| 佛山市| 米易县| 绥滨县| 罗田县|