找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Advances in Data-driven Computing and Intelligent Systems; Selected Papers from Swagatam Das,Snehanshu Saha,Jagdish Chand Bansal Conference

[復制鏈接]
樓主: 法官所用
51#
發(fā)表于 2025-3-30 09:36:33 | 只看該作者
https://doi.org/10.1007/978-94-6091-719-6llowers may see each other’s ideas and sentiments, which may spread to more users in the future. Therefore, this research proposes a concept named “sentiment community”. The purpose is to explore the feelings and interactions of users on social networking sites. We have used graphs for the modelling
52#
發(fā)表于 2025-3-30 15:39:32 | 只看該作者
Anita Hussenius,Kathryn Scantlebury. Electroencephalogram (EEG) trials from eight channels collected during an oddball experiment were used in this analysis. All the trials were divided into non-target (non-P300) and target (P300) trial cohorts. Data-driven correlated component analysis (CorrCA) was applied to both cohorts separately
53#
發(fā)表于 2025-3-30 19:46:52 | 只看該作者
Sherry A. Southerland,Sibel Uysal Bahbaht there should exist a system that can handle the queries raised by a farmer in regional language and respond to queries asked with minimal human involvement. The proposed framework accepts the farmers‘ queries spoken in Kannada language and translates the Kannada query into English query. The trans
54#
發(fā)表于 2025-3-30 21:18:57 | 只看該作者
M.-H. Chiu,P. J. Gilmer,D. F. Treagusts based on their speech features extracted from the speech utterances. After the recent developments of deep learning (DL) models, deep convolutional neural networks (DCNNs) have been widely used for solving the SI tasks. A CNN model consists of mainly two parts, deep convolutional feature extractio
55#
發(fā)表于 2025-3-31 01:05:14 | 只看該作者
https://doi.org/10.1007/978-3-030-50797-8 speech processing. It plays a vital role in various real-life applications such as Internet of things (IoT) devices and assistive technology to name a few. The deep learning models like convolutional neural networks (CNNs) have shown the potential ability to solve SCR tasks. However, these models’
56#
發(fā)表于 2025-3-31 08:03:59 | 只看該作者
https://doi.org/10.1007/978-3-030-50797-8n and prevention measures help in improving the farm productivity. Internet of Things (IoT)-based monitoring techniques are required to reduce the manual efforts and improve the precision in decision making. Sensor-based Internet of Things (SBIoT) is capable of providing a framework for remote monit
57#
發(fā)表于 2025-3-31 10:00:25 | 只看該作者
58#
發(fā)表于 2025-3-31 16:33:20 | 只看該作者
59#
發(fā)表于 2025-3-31 21:28:06 | 只看該作者
60#
發(fā)表于 2025-4-1 01:37:51 | 只看該作者
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-8 03:26
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
改则县| 北辰区| 浠水县| 丹寨县| 木里| 邮箱| 同仁县| 土默特左旗| 扎囊县| 辽源市| 武隆县| 噶尔县| 湟源县| 普兰店市| 泰兴市| 万全县| 沾化县| 望城县| 墨竹工卡县| 宿松县| 茂名市| 美姑县| 治县。| 临沭县| 长宁区| 竹山县| 舒城县| 平江县| 保靖县| 承德县| 洪江市| 阿拉善盟| 保康县| 新巴尔虎左旗| 师宗县| 镇远县| 佛山市| 晋城| 潼南县| 铁岭市| 舒兰市|