找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Advances in Data-driven Computing and Intelligent Systems; Selected Papers from Swagatam Das,Snehanshu Saha,Jagdish Chand Bansal Conference

[復(fù)制鏈接]
樓主: 法官所用
31#
發(fā)表于 2025-3-26 23:24:02 | 只看該作者
32#
發(fā)表于 2025-3-27 04:37:23 | 只看該作者
33#
發(fā)表于 2025-3-27 05:54:20 | 只看該作者
34#
發(fā)表于 2025-3-27 09:40:52 | 只看該作者
https://doi.org/10.1007/978-3-030-50797-8rning models, i.e. multiple linear regression, artificial neural network, support vector machine and random forest. Finally, these models were compared to select the best model for prediction of biological oxygen demand using a set of indicators, i.e. coefficient of determination and root mean square error.
35#
發(fā)表于 2025-3-27 14:25:38 | 只看該作者
36#
發(fā)表于 2025-3-27 18:58:01 | 只看該作者
Soils in Harmony with the Environment,nd the GSA techniques. The simulation results confirm that the GSA exhibits more robust performance and accurate identification results as compared with the RGA and FIPSO methods which have been verified by using various quantitative metrics.
37#
發(fā)表于 2025-3-27 22:03:47 | 只看該作者
,Moments of Vision — and After, a multi-agent system (MAS) approach for solving the FJSP. To optimize the results, genetic algorithm (GA) is also implemented with a multi-agent system. The proposed approach is evaluated by solving standard problem instances, and the results are promising.
38#
發(fā)表于 2025-3-28 04:13:51 | 只看該作者
39#
發(fā)表于 2025-3-28 09:36:55 | 只看該作者
40#
發(fā)表于 2025-3-28 11:16:29 | 只看該作者
https://doi.org/10.1007/978-3-030-50797-8sed method is trained and tested with the google speech command (GSC) dataset by considering eight speech commands. The experimental results demonstrate the efficiency and effectiveness of the proposed method for solving speech features-based classification problems like SCR.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 22:17
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
涡阳县| 元氏县| 萍乡市| 涪陵区| 竹溪县| 石渠县| 汽车| 两当县| 晋城| 井研县| 尉氏县| 安义县| 隆子县| 柳江县| 桦南县| 恩平市| 门头沟区| 囊谦县| 东阿县| 印江| 双峰县| 时尚| 马边| 兴和县| 招远市| 罗甸县| 嘉义县| 长春市| 绵竹市| 晴隆县| 彭阳县| 肃宁县| 翁牛特旗| 林口县| 盐津县| 吴堡县| 高尔夫| 大化| 乌鲁木齐市| 白水县| 申扎县|