找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Advances in Data-Driven Computing and Intelligent Systems; Selected Papers from Swagatam Das,Snehanshu Saha,Jagdish C. Bansal Conference pr

[復(fù)制鏈接]
樓主: FROM
51#
發(fā)表于 2025-3-30 11:00:21 | 只看該作者
52#
發(fā)表于 2025-3-30 14:06:49 | 只看該作者
Multi-sensor Data Fusion and Deep Machine Learning Models-Based Mental Stress Detection System,978-1-137-50557-6
53#
發(fā)表于 2025-3-30 18:33:26 | 只看該作者
54#
發(fā)表于 2025-3-30 23:51:16 | 只看該作者
FASRGAN: Feature Attention Super Resolution Generative Adversarial Network,
55#
發(fā)表于 2025-3-31 01:39:09 | 只看該作者
Advances in Data-Driven Computing and Intelligent SystemsSelected Papers from
56#
發(fā)表于 2025-3-31 08:44:32 | 只看該作者
57#
發(fā)表于 2025-3-31 09:57:18 | 只看該作者
https://doi.org/10.1007/978-3-211-72138-4ription of its components and operation scenarios. Then, the authors considered a sample scenario for disease stratification based on obtaining values of health indicators and performing calculations according to a defined methodology. An algorithm for data collection and analysis for diagnosis maki
58#
發(fā)表于 2025-3-31 16:08:14 | 只看該作者
The middle cranial base and cavernous sinused on the result derived, the Assamese corpus size has been enhanced to 50,000 words and better performance is noted in terms of accuracy rate, precision, recall, and .1-score. As a result, an accuracy of 91.20% is achieved for LSTM and 91.72% for Bi-LSTM. Concerned with substantial research from th
59#
發(fā)表于 2025-3-31 18:36:03 | 只看該作者
The middle cranial base and cavernous sinusphs for each model are shown. The graphs show that the LSTM model performs better at detecting explicit lyrics in Hindi music than other machine learning models, with greater accuracy and lower loss. Overall, the study underlines the benefits of employing LSTM over alternative approaches and shows h
60#
發(fā)表于 2025-4-1 01:20:46 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 08:27
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
红安县| 兴安盟| 兴业县| 铜山县| 平潭县| 绵竹市| 唐海县| 上思县| 苍南县| 北辰区| 湖口县| 哈巴河县| 陇南市| 昌黎县| 海阳市| 汶川县| 仁布县| 鄂尔多斯市| 太保市| 东方市| 昆明市| 揭阳市| 林口县| 嘉鱼县| 奈曼旗| 静海县| 旺苍县| 安岳县| 甘孜县| 乌什县| 阳东县| 东光县| 全椒县| 延庆县| 九龙县| 左云县| 大同县| 调兵山市| 延津县| 龙川县| 凌海市|