找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Advances in Cryptology - CRYPTO ‘97; 17th Annual Internat Burton S. Kaliski Conference proceedings 1997 Springer-Verlag Berlin Heidelberg 1

[復制鏈接]
樓主: affront
41#
發(fā)表于 2025-3-28 17:22:17 | 只看該作者
Creating, Updating, and Releasing a QMS,mputational problem on lattices is hard on the worst-case. Their encryption method may cause decryption errors, though with small probability (i.e., inversely proportional to the security parameter). In this paper we modify the encryption method of Ajtai and Dwork so that the legitimate receiver alw
42#
發(fā)表于 2025-3-28 19:36:27 | 只看該作者
43#
發(fā)表于 2025-3-28 23:34:41 | 只看該作者
44#
發(fā)表于 2025-3-29 06:27:29 | 只看該作者
45#
發(fā)表于 2025-3-29 11:17:23 | 只看該作者
46#
發(fā)表于 2025-3-29 14:18:02 | 只看該作者
CMOS Differential Logic Families,sically all knapsack cryptosystems that have been proposed so far have been broken, mainly by means of lattice reduction techniques. However, a few knapsack-like cryptosystems have withstood cryptanalysis, among which the Chor-Rivest scheme [2] even if this is debatable (see [16]), and the Qu-Vansto
47#
發(fā)表于 2025-3-29 16:58:19 | 只看該作者
48#
發(fā)表于 2025-3-29 21:03:35 | 只看該作者
Physics and Modelling of MOSFETs,ultiplicative property of RSA signature function and extends old results of De Jonge and Chaum [DJC] as well as recent results of Girault and Misarsky [GM]. Our method uses the lattice basis reduction [LLL] and algorithms of László Babai [B]. Our attack is valid when the length of redundancy is roug
49#
發(fā)表于 2025-3-30 00:19:22 | 只看該作者
50#
發(fā)表于 2025-3-30 07:35:06 | 只看該作者
The CMOS Inverter: Analysis and Design, to extract some information on the secret key. This attacking scenario is well understood in the cryptographic community. However, there are many protocols based on the discrete logarithm problem that turn out to leak many of the secret key bits from this oracle attack, unless suitable checkings ar
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-18 17:17
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
密云县| 永吉县| 阿克苏市| 博罗县| 鸡西市| 确山县| 北安市| 建水县| 清镇市| 抚远县| 岑溪市| 连山| 阜南县| 会理县| 紫云| 同江市| 永城市| 桂东县| 措勤县| 军事| 油尖旺区| 桦甸市| 连江县| 桓台县| 保亭| 隆安县| 喜德县| 开封县| 泌阳县| 永安市| 张北县| 通河县| 临猗县| 扎鲁特旗| 大名县| 霍城县| 土默特左旗| 宾川县| 申扎县| 会泽县| 东莞市|