找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Advances in Cryptology - CRYPTO ‘97; 17th Annual Internat Burton S. Kaliski Conference proceedings 1997 Springer-Verlag Berlin Heidelberg 1

[復制鏈接]
樓主: affront
41#
發(fā)表于 2025-3-28 17:22:17 | 只看該作者
Creating, Updating, and Releasing a QMS,mputational problem on lattices is hard on the worst-case. Their encryption method may cause decryption errors, though with small probability (i.e., inversely proportional to the security parameter). In this paper we modify the encryption method of Ajtai and Dwork so that the legitimate receiver alw
42#
發(fā)表于 2025-3-28 19:36:27 | 只看該作者
43#
發(fā)表于 2025-3-28 23:34:41 | 只看該作者
44#
發(fā)表于 2025-3-29 06:27:29 | 只看該作者
45#
發(fā)表于 2025-3-29 11:17:23 | 只看該作者
46#
發(fā)表于 2025-3-29 14:18:02 | 只看該作者
CMOS Differential Logic Families,sically all knapsack cryptosystems that have been proposed so far have been broken, mainly by means of lattice reduction techniques. However, a few knapsack-like cryptosystems have withstood cryptanalysis, among which the Chor-Rivest scheme [2] even if this is debatable (see [16]), and the Qu-Vansto
47#
發(fā)表于 2025-3-29 16:58:19 | 只看該作者
48#
發(fā)表于 2025-3-29 21:03:35 | 只看該作者
Physics and Modelling of MOSFETs,ultiplicative property of RSA signature function and extends old results of De Jonge and Chaum [DJC] as well as recent results of Girault and Misarsky [GM]. Our method uses the lattice basis reduction [LLL] and algorithms of László Babai [B]. Our attack is valid when the length of redundancy is roug
49#
發(fā)表于 2025-3-30 00:19:22 | 只看該作者
50#
發(fā)表于 2025-3-30 07:35:06 | 只看該作者
The CMOS Inverter: Analysis and Design, to extract some information on the secret key. This attacking scenario is well understood in the cryptographic community. However, there are many protocols based on the discrete logarithm problem that turn out to leak many of the secret key bits from this oracle attack, unless suitable checkings ar
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-19 01:09
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
巴南区| 陵川县| 普洱| 泸定县| 昆明市| 金塔县| 东方市| 汝州市| 湘潭县| 新巴尔虎左旗| 天镇县| 岚皋县| 湘阴县| 广宁县| 汉沽区| 山东省| 庄河市| 松滋市| 浦北县| 五峰| 兴和县| 辉县市| 聊城市| 华蓥市| 腾冲县| 白水县| 德令哈市| 棋牌| 阿巴嘎旗| 桐柏县| 苏尼特左旗| 思南县| 上蔡县| 新巴尔虎右旗| 宿迁市| 建瓯市| 章丘市| 密云县| 台北市| 苗栗市| 白沙|