找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Advances in Cryptology – EUROCRYPT 2005; 24th Annual Internat Ronald Cramer Conference proceedings 2005 Springer-Verlag Berlin Heidelberg 2

[復制鏈接]
樓主: Aggrief
11#
發(fā)表于 2025-3-23 13:13:25 | 只看該作者
12#
發(fā)表于 2025-3-23 15:04:40 | 只看該作者
13#
發(fā)表于 2025-3-23 21:48:43 | 只看該作者
Charles C. Gornick,D. Woodrow Benson Jr.re schemes either employed a trusted-party aided join operation or a complex joining protocol requiring many interactions between the prospective user and the Group Manager (GM). In addition no efficient scheme employed a join protocol proven secure against adversaries that have the capability to dy
14#
發(fā)表于 2025-3-24 02:08:34 | 只看該作者
15#
發(fā)表于 2025-3-24 05:26:34 | 只看該作者
16#
發(fā)表于 2025-3-24 08:40:36 | 只看該作者
https://doi.org/10.1007/978-1-4684-7526-5pproach allows to maximize the bound on the solutions of .(.,.) in a purely combinatorial way. We give various construction rules for different shapes of .(.,.)’s Newton polygon. Our method has several applications. Most interestingly, we reduce the case of solving univariate polynomials .(.) modulo
17#
發(fā)表于 2025-3-24 11:38:44 | 只看該作者
18#
發(fā)表于 2025-3-24 15:27:56 | 只看該作者
David E. Clapham,Robert L. DeHaanf the dimension of the coding and encoded Hilbert spaces. However, this bound only applies to codes which recover the message exactly. Naively, one might expect that correcting errors to very high fidelity would only allow small violations of this bound. This intuition is incorrect: in this paper we
19#
發(fā)表于 2025-3-24 22:21:07 | 只看該作者
20#
發(fā)表于 2025-3-25 01:24:03 | 只看該作者
David E. Clapham,Robert L. DeHaan < ./3 of them being corrupted, and security parameter ., a circuit with . gates can be securely computed with communication complexity . bits. In contrast to all previous asynchronous protocols with optimal resilience, our protocol requires access to an expensive broadcast primitive only . times —
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 06:40
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
万州区| 珠海市| 兰州市| 麦盖提县| 宜宾市| 庄浪县| 普安县| 台安县| 龙岩市| 景德镇市| 富锦市| 白水县| 彝良县| 岑溪市| 马公市| 昌邑市| 东光县| 资中县| 四子王旗| 巴马| 苍梧县| 尼玛县| 铜山县| 永善县| 集贤县| 临沧市| 达拉特旗| 房产| 教育| 定兴县| 彭州市| 普兰店市| 海丰县| 客服| 蛟河市| 乌兰浩特市| 呼伦贝尔市| 荣成市| 名山县| 平度市| 大英县|