找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Advances in Cryptology -- ASIACRYPT 2013; 19th International C Kazue Sako,Palash Sarkar Conference proceedings 2013 International Associati

[復(fù)制鏈接]
樓主: injurious
51#
發(fā)表于 2025-3-30 11:16:25 | 只看該作者
Cancer of the Prostate and Kidneyhe output. The state of the art in RKA security protects against an a-priori unbounded number of certain algebraic induced key relations, e.g., affine functions or polynomials of bounded degree. In this work, we show that it is possible to go beyond the algebraic barrier and achieve security against
52#
發(fā)表于 2025-3-30 12:25:14 | 只看該作者
53#
發(fā)表于 2025-3-30 17:43:04 | 只看該作者
54#
發(fā)表于 2025-3-30 22:45:30 | 只看該作者
55#
發(fā)表于 2025-3-31 04:37:05 | 只看該作者
56#
發(fā)表于 2025-3-31 06:30:24 | 只看該作者
Treatment of Nonseminoma: Stage In (with long messages) to obtain lossy trapdoor functions, and hence injective one-way trapdoor functions..Bellare, Halevi, Sahai and Vadhan (CRYPTO ’98) showed that if . is an IND-CPA secure cryptosystem, and . is a random oracle, then . ? .(.,.(.)) is an injective trapdoor function. In this work,
57#
發(fā)表于 2025-3-31 10:56:46 | 只看該作者
https://doi.org/10.1007/978-1-84800-370-5uire the knowledge about ., but the dependency can be removed while keeping nearly the same parameters. In the latter case, we get a construction of pseudo-random generator from any unknown-regular one-way function using seed length . and . calls, where . omits a factor that can be made arbitrarily
58#
發(fā)表于 2025-3-31 16:39:53 | 只看該作者
https://doi.org/10.1007/978-1-84800-370-5function at all points in the domain of the function. In a PRF it is possible to derive constrained keys .. from the master key .. A constrained key .. enables the evaluation of the PRF at a certain subset . of the domain and nowhere else. We present a formal framework for this concept and show that
59#
發(fā)表于 2025-3-31 20:08:22 | 只看該作者
60#
發(fā)表于 2025-4-1 01:23:47 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-15 21:05
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
思茅市| 加查县| 丰城市| 同心县| 襄城县| 屯昌县| 济宁市| 富阳市| 五家渠市| 盐边县| 汤阴县| 余姚市| 垦利县| 疏勒县| 南昌县| 斗六市| 丹东市| 台东市| 襄汾县| 玉山县| 南川市| 武邑县| 连云港市| 思茅市| 温泉县| 翼城县| 城市| 禄劝| 宜丰县| 建湖县| 姜堰市| 葫芦岛市| 新津县| 铅山县| 洪洞县| 金溪县| 汤阴县| 巫山县| 海原县| 和平县| 古丈县|