找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Advances in Applied Mathematics and Approximation Theory; Contributions from A George A. Anastassiou,Oktay Duman Conference proceedings 201

[復制鏈接]
樓主: affront
31#
發(fā)表于 2025-3-26 21:26:44 | 只看該作者
,Solving Second-Order Discrete Sturm–Liouville BVP Using Matrix Pencils,ing three metallic materials have been qualified to be available as implant materials, i.e. Fe-Cr-Ni, Co-Cr and Ti-Al-V [2]. However, shape memory alloys have been recently introduced to medicine, since they have unique functions such as shape memory effect, superelasticity and damping capacity.
32#
發(fā)表于 2025-3-27 02:48:49 | 只看該作者
33#
發(fā)表于 2025-3-27 08:39:58 | 只看該作者
34#
發(fā)表于 2025-3-27 09:52:23 | 只看該作者
,Extension of Karmarkar’s Algorithm for Solving an Optimization Problem,-preserving - proximation by real or complex polynomials in one or several variables. Chapter 5 is an exception and is devoted to some related important but n- polynomial andnonsplineapproximations preservingshape.Thesplinecaseis completely excluded in the present book, since on the one hand, many d
35#
發(fā)表于 2025-3-27 13:44:18 | 只看該作者
The Construction of Particular Solutions of the Nonlinear Equation of Schrodinger Type,y held by both teachers and students. The influence of subject subcultures and communities of practice will be discussed in terms of defining and operationalising technological concepts and processes. Technological concepts are not consistently defined in the literature. For students to undertake te
36#
發(fā)表于 2025-3-27 18:46:56 | 只看該作者
George A. Anastassiou,Oktay DumanContributions from the only conference to bring together researchers from applied mathematics and approximation theory.Featuring clearly presented and unique contributions of the most recent advances
37#
發(fā)表于 2025-3-28 01:29:29 | 只看該作者
38#
發(fā)表于 2025-3-28 02:13:05 | 只看該作者
39#
發(fā)表于 2025-3-28 10:08:43 | 只看該作者
40#
發(fā)表于 2025-3-28 13:31:27 | 只看該作者
https://doi.org/10.1007/978-3-540-75238-7tion, and study its fundamental properties. We also present the fractional hypergeometric matrix function as a solution of the matrix generalization of the fractional Gauss differential equation. Some special cases are discussed.
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-18 14:53
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
淅川县| 林西县| 榆树市| 汤阴县| 雅安市| 宜良县| 平遥县| 马尔康县| 樟树市| 鹿泉市| 灌云县| 合江县| 霞浦县| 固镇县| 庐江县| 普陀区| 休宁县| 吕梁市| 姜堰市| 嫩江县| 泌阳县| 鹰潭市| 乌兰察布市| 开鲁县| 平乐县| 什邡市| 固始县| 扎鲁特旗| 广饶县| 嵊州市| 临西县| 澄城县| 新密市| 耿马| 余干县| 绥化市| 黔西县| 舟山市| 渭南市| 博湖县| 太康县|