找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Advances in Analysis and Geometry; New Developments Usi Tao Qian,Thomas Hempfling,Frank Sommen Book 2004 Springer Basel AG 2004 Algebra.Cli

[復制鏈接]
查看: 42237|回復: 57
樓主
發(fā)表于 2025-3-21 18:26:54 | 只看該作者 |倒序瀏覽 |閱讀模式
期刊全稱Advances in Analysis and Geometry
期刊簡稱New Developments Usi
影響因子2023Tao Qian,Thomas Hempfling,Frank Sommen
視頻videohttp://file.papertrans.cn/147/146658/146658.mp4
發(fā)行地址Contains most recent results and surveys of the state of the art in the discipline.Based on an ICM 2002 Satellite Meeting on Clifford Analysis and Its Applications in Macau
學科分類Trends in Mathematics
圖書封面Titlebook: Advances in Analysis and Geometry; New Developments Usi Tao Qian,Thomas Hempfling,Frank Sommen Book 2004 Springer Basel AG 2004 Algebra.Cli
影響因子On the 16th of October 1843, Sir William R. Hamilton made the discovery of the quaternion algebra H = qo + qli + q2j + q3k whereby the product is determined by the defining relations ·2 ·2 1 Z =] = - , ij = -ji = k. In fact he was inspired by the beautiful geometric model of the complex numbers in which rotations are represented by simple multiplications z ----t az. His goal was to obtain an algebra structure for three dimensional visual space with in particular the possibility of representing all spatial rotations by algebra multiplications and since 1835 he started looking for generalized complex numbers (hypercomplex numbers) of the form a + bi + cj. It hence took him a long time to accept that a fourth dimension was necessary and that commutativity couldn‘t be kept and he wondered about a possible real life meaning of this fourth dimension which he identified with the scalar part qo as opposed to the vector part ql i + q2j + q3k which represents a point in space.
Pindex Book 2004
The information of publication is updating

書目名稱Advances in Analysis and Geometry影響因子(影響力)




書目名稱Advances in Analysis and Geometry影響因子(影響力)學科排名




書目名稱Advances in Analysis and Geometry網(wǎng)絡公開度




書目名稱Advances in Analysis and Geometry網(wǎng)絡公開度學科排名




書目名稱Advances in Analysis and Geometry被引頻次




書目名稱Advances in Analysis and Geometry被引頻次學科排名




書目名稱Advances in Analysis and Geometry年度引用




書目名稱Advances in Analysis and Geometry年度引用學科排名




書目名稱Advances in Analysis and Geometry讀者反饋




書目名稱Advances in Analysis and Geometry讀者反饋學科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權限
沙發(fā)
發(fā)表于 2025-3-21 21:50:29 | 只看該作者
板凳
發(fā)表于 2025-3-22 03:34:29 | 只看該作者
地板
發(fā)表于 2025-3-22 07:09:28 | 只看該作者
5#
發(fā)表于 2025-3-22 10:01:10 | 只看該作者
Miscellaneous aspects of modelling,. ∈ .. The boundary conditions are that the field be either normal or tangential at the boundary. The well-posedness of these problems is related to a Hodge decomposition of the space ..(Ω) corresponding to the operators . and . In developing this relationship, we derive a theory of nilpotent operat
6#
發(fā)表于 2025-3-22 13:08:03 | 只看該作者
Miscellaneous aspects of modelling,These distributions are “classical” in the sense that they were already introduced, albeit dispersed, in the literature on harmonic analysis and on Clifford analysis. Amongst these classical distributions are the fundamental solutions of the natural powers of the Laplace and the Dirac operators, and
7#
發(fā)表于 2025-3-22 19:56:06 | 只看該作者
Boundary Representation Modelling Techniquesre e.=1. The modified Dirac operator is introduced for . By ., where ′ is the main involution and . is given by the decomposition .. with ., . ∈.?.. A .+1-times continuously differentiable function f: Ω→.?., is called .-hypermonogenic in an open subsetΩof ., if ... = 0 outside the hyperplane .. = 0.
8#
發(fā)表于 2025-3-22 21:17:48 | 只看該作者
9#
發(fā)表于 2025-3-23 03:24:28 | 只看該作者
10#
發(fā)表于 2025-3-23 07:08:25 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-22 17:31
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
阿瓦提县| 定州市| 泰顺县| 丹凤县| 昭觉县| 裕民县| 贡觉县| 德昌县| 佛学| 汉源县| 新昌县| 墨江| 宁海县| 六枝特区| 苏州市| 岚皋县| 青浦区| 楚雄市| 娱乐| 宁海县| 西丰县| 清丰县| 孟村| 安义县| 长寿区| 图木舒克市| 盐源县| 璧山县| 阳东县| 梁平县| 舞阳县| 象州县| 防城港市| 东乡族自治县| 海阳市| 咸丰县| 珠海市| 崇义县| 缙云县| 诏安县| 潍坊市|