找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Advances in Algebra and Geometry; University of Hydera C. Musili Book 2003 Hindustan Book Agency (India) 2003

[復(fù)制鏈接]
樓主: 極大
31#
發(fā)表于 2025-3-27 00:53:41 | 只看該作者
Studies in History and Philosophy of Scienceynomial in one variable. A consequence of some of these results is that problems on . or .*-fibrations usually reduce to the situation where the base ring is one-dimensional. Some recent structure theorems on .*-fibrations over one-dimensional seminormal domains will be mentioned along with explicit examples of non-trivial .*-fibrations.
32#
發(fā)表于 2025-3-27 05:09:42 | 只看該作者
33#
發(fā)表于 2025-3-27 09:19:51 | 只看該作者
34#
發(fā)表于 2025-3-27 13:21:45 | 只看該作者
The method of weighted likelihood functionspace and graded modules over an exterior algebra. In particular I will describe the connection of free resolutions over the exterior algebra with cohomology of sheaves, and with the Chow form, topics taken from various joint work with Gunnar Floystad and Frank-Olaf Schreyer.
35#
發(fā)表于 2025-3-27 15:37:44 | 只看該作者
Hindustan Book Agency (India) 2003
36#
發(fā)表于 2025-3-27 20:46:47 | 只看該作者
37#
發(fā)表于 2025-3-28 00:03:07 | 只看該作者
Concluding Remarks to the Workshop SessionFormulas are obtained in terms of complete reductions for the bigraded components of local cohomology modules of bigraded Rees algebras of 0-dimensional ideals in 2-dimensional Cohen-Macaulay local rings. As a consequence, cohomological expressions for the coefficients of the Bhattacharya polynomial of such ideals are obtained.
38#
發(fā)表于 2025-3-28 03:47:24 | 只看該作者
https://doi.org/10.1007/978-3-322-85441-4We prove a strong Hasse principle for quadratic forms over quotient fields of comlete 2-dimensional local domains with algebraically closed residue fields. This generalizes a result of Jaworski [4].
39#
發(fā)表于 2025-3-28 07:10:25 | 只看該作者
40#
發(fā)表于 2025-3-28 12:52:13 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 22:29
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
大新县| 门源| 罗山县| 新干县| 邹平县| 鞍山市| 宿迁市| 珲春市| 彰化县| 滕州市| 潞西市| 台山市| 司法| 休宁县| 金山区| 聂荣县| 泰州市| 韶关市| 石嘴山市| 安仁县| 寻甸| 武邑县| 宁乡县| 澄江县| 天台县| 桑植县| 新野县| 茂名市| 通山县| 巫山县| 昌宁县| 金川县| 米易县| 敦煌市| 云林县| 赤峰市| 牙克石市| 奇台县| 廉江市| 芜湖县| 青铜峡市|