找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Advanced Topics in the Arithmetic of Elliptic Curves; Joseph H. Silverman Textbook 1994 Springer Science+Business Media New York 1994 Elli

[復制鏈接]
樓主: hearken
21#
發(fā)表于 2025-3-25 03:37:38 | 只看該作者
https://doi.org/10.1007/978-1-4612-0851-8Elliptic Curve; algebraic surface; arithmetic; Divisor; elliptic curve; modular curve
22#
發(fā)表于 2025-3-25 07:35:35 | 只看該作者
23#
發(fā)表于 2025-3-25 12:28:02 | 只看該作者
Arnold Frhr. v. Vietinghoff-Rieschon of the group of rational points and Siegel’s theorem on the finiteness of the set of integral points. This second volume continues our study of elliptic curves by presenting six important, but somewhat more specialized, topics.
24#
發(fā)表于 2025-3-25 19:16:58 | 只看該作者
25#
發(fā)表于 2025-3-25 23:06:24 | 只看該作者
N.L. Dobretsov,N.A. Kolchanov,V.V. Suslovor CM for short. Such curves have many special properties. For example, the endomorphism ring of a CM curve . is an order in a quadratic imaginary field ., and the .-invariant and torsion points of . generate abelian extensions of .. This is analogous to the way in which the torsion points of G.(?)
26#
發(fā)表于 2025-3-26 03:34:46 | 只看該作者
27#
發(fā)表于 2025-3-26 05:36:49 | 只看該作者
A.A. Oborin,L.M. Rubinstein,V.T. Khmurchik coefficients ., ., ., . ∈ .. This equation can be used to define a closed subscheme . An elementary property of closed subschemes of projective space says that every point of .(.) extends to give a point of .(.), that is, a section Spec(.) → ..
28#
發(fā)表于 2025-3-26 09:27:19 | 只看該作者
29#
發(fā)表于 2025-3-26 16:29:29 | 只看該作者
Advanced Topics in the Arithmetic of Elliptic Curves978-1-4612-0851-8Series ISSN 0072-5285 Series E-ISSN 2197-5612
30#
發(fā)表于 2025-3-26 19:51:57 | 只看該作者
Arnold Frhr. v. Vietinghoff-Rieschon of the group of rational points and Siegel’s theorem on the finiteness of the set of integral points. This second volume continues our study of elliptic curves by presenting six important, but somewhat more specialized, topics.
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-16 11:39
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
上饶县| 建平县| 耿马| 林芝县| 南郑县| 吉首市| 堆龙德庆县| 和政县| 本溪市| 罗江县| 揭西县| 镇巴县| 大名县| 建始县| 平山县| 上饶县| 安宁市| 牡丹江市| 宜州市| 长顺县| 清水河县| 万州区| 游戏| 辽中县| 永嘉县| 甘孜| 沽源县| 湘潭市| 河间市| 斗六市| 尉犁县| 筠连县| 西青区| 青海省| 文化| 江阴市| 洱源县| 甘孜县| 平塘县| 斗六市| 富平县|