找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Advanced Query Processing; Volume 1: Issues and Barbara Catania,Lakhmi C. Jain Book 2013 Springer-Verlag Berlin Heidelberg 2013 Approximate

[復(fù)制鏈接]
查看: 34332|回復(fù): 53
樓主
發(fā)表于 2025-3-21 19:57:47 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
期刊全稱Advanced Query Processing
期刊簡(jiǎn)稱Volume 1: Issues and
影響因子2023Barbara Catania,Lakhmi C. Jain
視頻videohttp://file.papertrans.cn/147/146151/146151.mp4
發(fā)行地址Contains the latest research on advanced query processing.The state of the art of advanced query processing is presented in a handbook style.Written by leading experts in this field
學(xué)科分類Intelligent Systems Reference Library
圖書封面Titlebook: Advanced Query Processing; Volume 1: Issues and Barbara Catania,Lakhmi C. Jain Book 2013 Springer-Verlag Berlin Heidelberg 2013 Approximate
影響因子.This research book presents key developments, directions, and challenges concerning advanced query processing for both traditional and non-traditional data. A special emphasis is devoted to approximation and adaptivity issues as well as to the integration of heterogeneous data sources..?.The book will prove useful as a reference book for senior undergraduate or graduate courses on advanced data management issues, which have a special focus on query processing and data integration. It is aimed for technologists, managers, and developers who want to know more about emerging trends in advanced query processing..
Pindex Book 2013
The information of publication is updating

書目名稱Advanced Query Processing影響因子(影響力)




書目名稱Advanced Query Processing影響因子(影響力)學(xué)科排名




書目名稱Advanced Query Processing網(wǎng)絡(luò)公開(kāi)度




書目名稱Advanced Query Processing網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書目名稱Advanced Query Processing被引頻次




書目名稱Advanced Query Processing被引頻次學(xué)科排名




書目名稱Advanced Query Processing年度引用




書目名稱Advanced Query Processing年度引用學(xué)科排名




書目名稱Advanced Query Processing讀者反饋




書目名稱Advanced Query Processing讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:20:21 | 只看該作者
板凳
發(fā)表于 2025-3-22 00:29:58 | 只看該作者
L. E. Wold,T. Spelsberg,N. Jiang,F. Simr, they do not obviously extend to much more challenging, unorganized and unpredictable data providers, typical of emerging data intensive applications and novel processing environments. For them, advanced query processing and data integration approaches have been proposed with the aim of still guar
地板
發(fā)表于 2025-3-22 08:10:16 | 只看該作者
5#
發(fā)表于 2025-3-22 11:28:03 | 只看該作者
https://doi.org/10.1007/978-3-642-74462-4We now survey existing algorithms for each query and show a ‘meta-algorithm’ framework for each query. The goal of this chapter is to show that how this framework and cost model enable us to (a) generalize existing algorithms and (b) observe important principles not observed from individual algorith
6#
發(fā)表于 2025-3-22 16:33:30 | 只看該作者
7#
發(fā)表于 2025-3-22 17:42:47 | 只看該作者
Origin and Dynamics of Lysosomes,d approximation techniques refer to the query to be executed and not to data representation as in the the past monolithic Geographic Information Systems and for this reason they are called . approximation techniques. The aim of this chapter is to survey such approximation techniques and to identify
8#
發(fā)表于 2025-3-22 21:20:13 | 只看該作者
9#
發(fā)表于 2025-3-23 01:23:21 | 只看該作者
Studies of the Maize Chloroplast Chromosome,data that needs to be processed.We first focus on progressive join algorithms for various data models. We introduce a framework for progressive join processing, called the Result Rate based Progressive Join (RRPJ) framework which can be used for join processing for various data models, and discuss i
10#
發(fā)表于 2025-3-23 07:58:00 | 只看該作者
https://doi.org/10.1007/978-3-642-81557-7on that for some applications, the precise results are not always required. Instead, the approximate results can provide a good enough estimation. Compared to the precise results, computing the approximate ones are more cost effective, especially for large-scale datasets. To generate the approximate
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-14 15:06
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
平阳县| 尉氏县| 夏河县| 满城县| 湖南省| 施秉县| 宣威市| 临高县| 治多县| 徐州市| 三穗县| 禄劝| 汉寿县| 锡林浩特市| 曲靖市| 绥中县| 茌平县| 富民县| 文昌市| 梅州市| 贡嘎县| 延庆县| 舒城县| 龙山县| 灌云县| 闸北区| 盐城市| 临猗县| 浦江县| 木兰县| 新余市| 汤阴县| 会宁县| 门源| 克拉玛依市| 南皮县| 陇西县| 黔西县| 黑水县| 资溪县| 凤城市|