找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Advanced Deep Learning for Engineers and Scientists; A Practical Approach Kolla Bhanu Prakash,Ramani Kannan,G. R. Kanagachid Book 2021 The

[復制鏈接]
查看: 32674|回復: 49
樓主
發(fā)表于 2025-3-21 18:36:45 | 只看該作者 |倒序瀏覽 |閱讀模式
期刊全稱Advanced Deep Learning for Engineers and Scientists
期刊簡稱A Practical Approach
影響因子2023Kolla Bhanu Prakash,Ramani Kannan,G. R. Kanagachid
視頻videohttp://file.papertrans.cn/146/145508/145508.mp4
發(fā)行地址Presents practical basics to advanced concepts in deep learning and how to apply them through various projects.Discusses topics such as deep learning in smart grids and renewable energy & sustainable
學科分類EAI/Springer Innovations in Communication and Computing
圖書封面Titlebook: Advanced Deep Learning for Engineers and Scientists; A Practical Approach Kolla Bhanu Prakash,Ramani Kannan,G. R. Kanagachid Book 2021 The
影響因子.This book provides a complete illustration of deep learning concepts with case-studies and practical examples useful for real time applications. This book introduces a broad range of topics in deep learning. The authors start with the fundamentals, architectures, tools needed for effective implementation for scientists. They then present technical exposure towards deep learning using Keras, Tensorflow, Pytorch and Python. They proceed with advanced concepts with hands-on sessions for deep learning. Engineers, scientists, researches looking for a practical approach to deep learning will enjoy this book..Presents practical basics to advanced concepts in deep learning and how to apply them through various projects;.Discusses topics such as deep learning in smart grids and renewable energy & sustainable development;.Explains how to implement advanced techniques in deep learning using Pytorch, Keras, Python programming.. .
Pindex Book 2021
The information of publication is updating

書目名稱Advanced Deep Learning for Engineers and Scientists影響因子(影響力)




書目名稱Advanced Deep Learning for Engineers and Scientists影響因子(影響力)學科排名




書目名稱Advanced Deep Learning for Engineers and Scientists網(wǎng)絡(luò)公開度




書目名稱Advanced Deep Learning for Engineers and Scientists網(wǎng)絡(luò)公開度學科排名




書目名稱Advanced Deep Learning for Engineers and Scientists被引頻次




書目名稱Advanced Deep Learning for Engineers and Scientists被引頻次學科排名




書目名稱Advanced Deep Learning for Engineers and Scientists年度引用




書目名稱Advanced Deep Learning for Engineers and Scientists年度引用學科排名




書目名稱Advanced Deep Learning for Engineers and Scientists讀者反饋




書目名稱Advanced Deep Learning for Engineers and Scientists讀者反饋學科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:44:47 | 只看該作者
板凳
發(fā)表于 2025-3-22 02:25:05 | 只看該作者
地板
發(fā)表于 2025-3-22 06:27:15 | 只看該作者
R. Ellegast,J. Kupfer,D. Reinert studies that Keras has extensive usage in various structured and unstructured domains. The objective of this chapter is to provide an overview of Keras, its models and layers. Classification (binary/multi-class) and regression models are discussed with help of case studies using Keras.
5#
發(fā)表于 2025-3-22 10:34:58 | 只看該作者
6#
發(fā)表于 2025-3-22 14:24:06 | 只看該作者
7#
發(fā)表于 2025-3-22 18:49:02 | 只看該作者
Diskussion der Mobilit?tsarrangementsovering hidden information and making correct predictions, and bioinformatics is no exception. In this review, potential applications of deep learning in bioinformatics research such as genomic sequence analysis, protein structure prediction, biomedical image processing and other omics data analyses have been presented.
8#
發(fā)表于 2025-3-23 00:45:50 | 只看該作者
9#
發(fā)表于 2025-3-23 01:58:18 | 只看該作者
https://doi.org/10.1007/978-3-642-72235-6 networks aka ConvNets or CNN and recurrent neural networks or RNN are explained with a few examples and their implementation in Python. Intuitive explanation with easily understandable mathematical interpretation can be seen in this chapter.
10#
發(fā)表于 2025-3-23 09:21:31 | 只看該作者
https://doi.org/10.1007/978-3-030-66519-7Deep Learning; Autoencoder; Pytorch and Deep Learning; Keras and Deep Learning; Deep dream; Tensorflow; Ne
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 10:39
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
沈阳市| 手游| 兰西县| 富川| 缙云县| 乌恰县| 北海市| 盐源县| 墨玉县| 夹江县| 绥江县| 山阴县| 会东县| 江安县| 竹北市| 虎林市| 松滋市| 昌宁县| 盐源县| 越西县| 南木林县| 福建省| 临猗县| 绍兴市| 胶州市| 天全县| 黄陵县| 洪泽县| 龙井市| 将乐县| 黄梅县| 汨罗市| 江门市| 长宁县| 泌阳县| 淅川县| 茶陵县| 灵武市| 镇康县| 柳江县| 罗平县|