找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Advanced Data Mining and Applications; 14th International C Guojun Gan,Bohan Li,Shuliang Wang Conference proceedings 2018 Springer Nature S

[復(fù)制鏈接]
查看: 22293|回復(fù): 61
樓主
發(fā)表于 2025-3-21 20:08:46 | 只看該作者 |倒序瀏覽 |閱讀模式
期刊全稱Advanced Data Mining and Applications
期刊簡稱14th International C
影響因子2023Guojun Gan,Bohan Li,Shuliang Wang
視頻videohttp://file.papertrans.cn/146/145478/145478.mp4
學(xué)科分類Lecture Notes in Computer Science
圖書封面Titlebook: Advanced Data Mining and Applications; 14th International C Guojun Gan,Bohan Li,Shuliang Wang Conference proceedings 2018 Springer Nature S
影響因子.This book constitutes the refereed proceedings of the 14th International Conference on Advanced Data Mining and Applications, ADMA 2018, held in Nanjing, China in November 2018.. The 23 full and 22 short papers presented in this volume were carefully reviewed and selected from 104 submissions. The papers were organized in topical sections named: Data Mining Foundations; Big Data; Text and Multimedia Mining; Miscellaneous Topics..
Pindex Conference proceedings 2018
The information of publication is updating

書目名稱Advanced Data Mining and Applications影響因子(影響力)




書目名稱Advanced Data Mining and Applications影響因子(影響力)學(xué)科排名




書目名稱Advanced Data Mining and Applications網(wǎng)絡(luò)公開度




書目名稱Advanced Data Mining and Applications網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Advanced Data Mining and Applications被引頻次




書目名稱Advanced Data Mining and Applications被引頻次學(xué)科排名




書目名稱Advanced Data Mining and Applications年度引用




書目名稱Advanced Data Mining and Applications年度引用學(xué)科排名




書目名稱Advanced Data Mining and Applications讀者反饋




書目名稱Advanced Data Mining and Applications讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:13:59 | 只看該作者
板凳
發(fā)表于 2025-3-22 04:18:29 | 只看該作者
https://doi.org/10.1007/978-3-319-14866-3mal prediction model of the scene delay is obtained. Experimental results show that compared with the traditional prediction model whose average accuracy is 70.45%, the proposed prediction model has higher prediction accuracy of 88.04%. In addition, the proposed model is verified to be robust.
地板
發(fā)表于 2025-3-22 05:10:35 | 只看該作者
5#
發(fā)表于 2025-3-22 09:23:22 | 只看該作者
6#
發(fā)表于 2025-3-22 15:43:37 | 只看該作者
Berichte zur Lebensmittelsicherheit 2013 cluster centers. The experimental results show that the Slice_OP algorithm outperformed the state-of-the-art Kmeans++ algorithm and random center initialization in the .-means algorithm on synthetic and real-world datasets.
7#
發(fā)表于 2025-3-22 20:09:09 | 只看該作者
8#
發(fā)表于 2025-3-22 22:31:11 | 只看該作者
Berichte zur Lebensmittelsicherheit 2014Nomenclature of Medicine of Clinical Terms). The experimentations performed with CIRM on the OHSUMED corpus showed encouraging results: the improvement rates are +43.18% and +43.75% in terms of Main Average Precision and Normalized Discounted Cumulative Gain when compared to the baseline.
9#
發(fā)表于 2025-3-23 04:19:22 | 只看該作者
Berichte zur Lebensmittelsicherheit 2014at leads to more accurate approximation of fitness function. This research work can contribute to the development of a more efficient search method for detecting subspace outliers. The experimental results demonstrate the improved efficiency of our technique compared with the existing method.
10#
發(fā)表于 2025-3-23 07:10:48 | 只看該作者
Berichte zur Resistenzmonitoringstudie 2009(ALM). Both quantitative and qualitative experimental results on two challenging datasets show competitive results as compared with other state-of-the-art methods. In addition, a new datasets which saliency object on the edge (SOE), containing 500 images is constructed for evaluating saliency detection.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-21 15:29
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
元朗区| 曲阳县| 黎平县| 龙游县| 南部县| 阿克| 河曲县| 嫩江县| 浦东新区| 盐边县| 易门县| 嘉祥县| 县级市| 柘城县| 利津县| 平陆县| 郴州市| 铁力市| 翁源县| 宁阳县| 祁连县| 铜川市| 安徽省| 合江县| 定西市| 七台河市| 遵义市| 集安市| 蒲江县| 通道| 天气| 乌鲁木齐县| 广东省| 探索| 睢宁县| 龙南县| 祁阳县| 安泽县| 乌鲁木齐市| 鹿邑县| 江津市|