找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Advanced Course on FAIRSHAPE; Josef Hoschek,Panagiotis D. Kaklis (Project-coordi Book 1996 B. G. Teubner Stuttgart 1996 algorithms.constru

[復(fù)制鏈接]
樓主: HBA1C
21#
發(fā)表于 2025-3-25 06:43:03 | 只看該作者
Wie kommt das Neue in die Welt?lending of surfaces whether complex or ... less complex is an important mode of generating CAD/CAM geometric entities not only because it involves several domains of mathematical expertise but also because it often conditions the quality (or at least the aesthetic quality) of the resulting product..
22#
發(fā)表于 2025-3-25 10:49:02 | 只看該作者
23#
發(fā)表于 2025-3-25 13:43:22 | 只看該作者
24#
發(fā)表于 2025-3-25 18:36:12 | 只看該作者
Overview: 978-3-519-02634-1978-3-322-82969-6
25#
發(fā)表于 2025-3-25 22:40:10 | 只看該作者
26#
發(fā)表于 2025-3-26 01:09:44 | 只看該作者
27#
發(fā)表于 2025-3-26 07:44:48 | 只看該作者
28#
發(fā)表于 2025-3-26 12:14:49 | 只看該作者
Martin Carmann,Christian Baudischtheir functional requirements, subject to pre-specified constraints. The surface properties of such objects are also analysed in terms of some conventional measures of fairness based upon surface curvature, and the results presented. A limited discussion of application areas where fairnesss, or indeed lack of it, may be desirable is also given.
29#
發(fā)表于 2025-3-26 13:37:19 | 只看該作者
Berechnung des geschlossenen Netzes,s are given under which it is possible to define a control net for such spline functions. The control net is understood as a piecewise linear function. If it is convex, then so is the underlying spline.
30#
發(fā)表于 2025-3-26 17:07:23 | 只看該作者
Epidemiology and HistopathologyRequirements for shape preserving interpolation by planar curves are discussed. How these may be satisfied is then illustrated by four different schemes.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-22 04:54
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
桂平市| 富民县| 兴宁市| 双辽市| 新野县| 泸州市| 弥勒县| 西平县| 鸡泽县| 礼泉县| 平南县| 襄城县| 无棣县| 大洼县| 凯里市| 辽阳县| 灵寿县| 天柱县| 侯马市| 黔西县| 健康| 桂东县| 浮山县| 神农架林区| 西贡区| 富蕴县| 大田县| 邯郸市| 南开区| 永新县| 唐海县| 南阳市| 湖口县| 宜州市| 英超| 桦甸市| 合川市| 龙胜| 大冶市| 苗栗市| 五常市|