找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Abelian Varieties; Serge Lang Textbook 1983 Springer-Verlag New York Inc. 1983 Abelian variety.Abelsche Variet?t.Varieties.algebra.homomor

[復制鏈接]
樓主: 脾氣好
11#
發(fā)表于 2025-3-23 09:42:42 | 只看該作者
http://image.papertrans.cn/a/image/143134.jpg
12#
發(fā)表于 2025-3-23 17:03:19 | 只看該作者
13#
發(fā)表于 2025-3-23 19:28:58 | 只看該作者
Oliver Schütze,Carlos Hernándezy properties of algebraic groups, and we shall not need structure theorems, for instance. All the results which we shall need are stated explicitly below. We give no proofs in § 1. Granting IAG, a complete self-contained exposition can be found in the papers of Weil and Rosenlicht.
14#
發(fā)表于 2025-3-23 22:46:53 | 只看該作者
Oliver Schütze,Carlos HernándezAn . is a group variety, which, as a variety, is complete. In the classical case, it is not difficult to show that topologically an abelian variety is a complex torus.
15#
發(fā)表于 2025-3-24 02:28:49 | 只看該作者
16#
發(fā)表于 2025-3-24 08:14:39 | 只看該作者
https://doi.org/10.1007/978-3-322-88139-7In the last chapter we defined various equivalence relations, and we shall now determine the structure of the factor groups for these equivalence relations in the group of divisors of an abelian variety A. We have inclusions
17#
發(fā)表于 2025-3-24 14:38:29 | 只看該作者
https://doi.org/10.1007/978-3-658-23456-0We first define the transpose of a homomorphism, i.e., the contravariant mapping induced on the Picard varieties. We prove that the transpose of an exact sequence (up to isogenies) is exact (up to isogenies).
18#
發(fā)表于 2025-3-24 18:21:56 | 只看該作者
https://doi.org/10.1007/978-3-663-02318-0In this chapter we exploit the fact that for . prime to the characteristic there exist exactly . points of order . on an abelian variety . of dimension ..
19#
發(fā)表于 2025-3-24 22:31:18 | 只看該作者
20#
發(fā)表于 2025-3-25 03:02:27 | 只看該作者
https://doi.org/10.1007/978-1-4419-8534-7Abelian variety; Abelsche Variet?t; Varieties; algebra; homomorphism
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2026-1-23 07:34
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
白银市| 邵东县| 杭锦旗| 绍兴县| 花莲县| 柞水县| 合江县| 永春县| 保德县| 图片| 西吉县| 肇庆市| 资溪县| 彰化市| 岚皋县| 峨眉山市| 乌恰县| 克什克腾旗| 山阳县| 平原县| 波密县| 永兴县| 容城县| 利川市| 乌兰察布市| 舞阳县| 大兴区| 龙游县| 英超| 乌拉特前旗| 彩票| 临清市| 龙山县| 永昌县| 稷山县| 江西省| 江北区| 泸水县| 三河市| 静安区| 都昌县|