找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Abelian Varieties; Serge Lang Textbook 1983 Springer-Verlag New York Inc. 1983 Abelian variety.Abelsche Variet?t.Varieties.algebra.homomor

[復(fù)制鏈接]
樓主: 脾氣好
11#
發(fā)表于 2025-3-23 09:42:42 | 只看該作者
http://image.papertrans.cn/a/image/143134.jpg
12#
發(fā)表于 2025-3-23 17:03:19 | 只看該作者
13#
發(fā)表于 2025-3-23 19:28:58 | 只看該作者
Oliver Schütze,Carlos Hernándezy properties of algebraic groups, and we shall not need structure theorems, for instance. All the results which we shall need are stated explicitly below. We give no proofs in § 1. Granting IAG, a complete self-contained exposition can be found in the papers of Weil and Rosenlicht.
14#
發(fā)表于 2025-3-23 22:46:53 | 只看該作者
Oliver Schütze,Carlos HernándezAn . is a group variety, which, as a variety, is complete. In the classical case, it is not difficult to show that topologically an abelian variety is a complex torus.
15#
發(fā)表于 2025-3-24 02:28:49 | 只看該作者
16#
發(fā)表于 2025-3-24 08:14:39 | 只看該作者
https://doi.org/10.1007/978-3-322-88139-7In the last chapter we defined various equivalence relations, and we shall now determine the structure of the factor groups for these equivalence relations in the group of divisors of an abelian variety A. We have inclusions
17#
發(fā)表于 2025-3-24 14:38:29 | 只看該作者
https://doi.org/10.1007/978-3-658-23456-0We first define the transpose of a homomorphism, i.e., the contravariant mapping induced on the Picard varieties. We prove that the transpose of an exact sequence (up to isogenies) is exact (up to isogenies).
18#
發(fā)表于 2025-3-24 18:21:56 | 只看該作者
https://doi.org/10.1007/978-3-663-02318-0In this chapter we exploit the fact that for . prime to the characteristic there exist exactly . points of order . on an abelian variety . of dimension ..
19#
發(fā)表于 2025-3-24 22:31:18 | 只看該作者
20#
發(fā)表于 2025-3-25 03:02:27 | 只看該作者
https://doi.org/10.1007/978-1-4419-8534-7Abelian variety; Abelsche Variet?t; Varieties; algebra; homomorphism
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-23 16:53
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
海宁市| 重庆市| 沭阳县| 郴州市| 武强县| 高唐县| 汪清县| 长汀县| 微山县| 顺平县| 崇左市| 临安市| 宁强县| 肇东市| 通江县| 富平县| 光泽县| 左云县| 鄄城县| 油尖旺区| 石嘴山市| 永顺县| 平泉县| 南康市| 小金县| 五家渠市| 五大连池市| 永川市| 娄烦县| 永济市| 佳木斯市| 平利县| 家居| 武邑县| 张家口市| 金华市| 衡山县| 怀化市| 洪洞县| 江源县| 翼城县|