找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Abelian Groups and Representations of Finite Partially Ordered Sets; David M. Arnold Book 2000 Springer Science+Business Media New York 20

[復(fù)制鏈接]
樓主: 貪吃的人
31#
發(fā)表于 2025-3-27 00:42:18 | 只看該作者
32#
發(fā)表于 2025-3-27 02:01:38 | 只看該作者
33#
發(fā)表于 2025-3-27 07:18:14 | 只看該作者
34#
發(fā)表于 2025-3-27 10:17:01 | 只看該作者
,11. Kapitel I.G.-Farben-Verwaltungsgeb?ude,Finite-dimensional vector spaces with finite sets of distinguished subspaces are illustrative examples of representations of finite posets. This provides a natural setting for equivalence and similarity of matrices, as demonstrated in the exercises.
35#
發(fā)表于 2025-3-27 16:42:31 | 只看該作者
,11. Kapitel I.G.-Farben-Verwaltungsgeb?ude,There are two equivalence relations on torsion-free abelian groups that are weaker than group isomorphism, namely quasi-isomorphism and isomorphism at a prime .. Properties of these equivalence relations are conveniently expressed in a categorical setting.
36#
發(fā)表于 2025-3-27 18:32:58 | 只看該作者
,7. Kapitel V?lkerschlachtdenkmal,Finite direct sums of torsion-free abelian groups of rank 1, called completely decomposable groups, can be classified in terms of types. Included in this section is a compilation of some of the fundamental properties of types and fully invariant subgroups determined by types.
37#
發(fā)表于 2025-3-27 23:59:07 | 只看該作者
https://doi.org/10.1007/978-3-642-53805-6An almost completely decomposable group is a torsion-free abelian group . of finite rank quasi-isomorphic to a completely decomposable group. An almost completely decomposable group is a Butler group, by Corollary 3.2.4, but any strongly indecomposable Butler group with finite rank greater than 1 is not almost completely decomposable.
38#
發(fā)表于 2025-3-28 02:25:34 | 只看該作者
39#
發(fā)表于 2025-3-28 07:58:26 | 只看該作者
The Impact of Wine Tourism on the Sustainability Outcomes of Spanish Wineries: An Exploration via Stto the ramifications of wine tourism on the holistic sustainability of Spanish wineries. Consequently, this inquiry holds instrumental value for academicians and industry practitioners pondering the initiation or augmentation of such tourism-centric initiatives within their establishments.
40#
發(fā)表于 2025-3-28 11:34:11 | 只看該作者
On-Orbit Performance Analysis of AIUS/GF-5 Instrument,in, and acceleration to these “random” type forces do not have simple time histories either. Typical data for either the time behavior of a force or the response to that force at a point on an ocean structure might look like the trace shown in Fig. 9.1, where, for generality, the ordinate is designa
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 14:33
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
虞城县| 海丰县| 万载县| 洛浦县| 芦山县| 阿合奇县| 曲麻莱县| 施秉县| 三亚市| 定远县| 黄石市| 鲜城| 万载县| 南充市| 双鸭山市| 余姚市| 邻水| 启东市| 禄丰县| 广德县| 习水县| 出国| 金华市| 贵港市| 盈江县| 平遥县| 乐业县| 清镇市| 奉节县| 青铜峡市| 明水县| 谷城县| 山阳县| 金湖县| 古交市| 长兴县| 泌阳县| 万安县| 邹城市| 毕节市| 丰都县|