找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Abelian Groups and Modules; Proceedings of the U R. G?bel,C. Metelli,L. Salce Conference proceedings 1984 CISM Udine 1984 Abelian group.bir

[復制鏈接]
樓主: GURU
41#
發(fā)表于 2025-3-28 17:01:53 | 只看該作者
A Combinatorial Theorem and Endomorphism Rings of Abelian Groups II,978-3-7091-4536-4
42#
發(fā)表于 2025-3-28 18:53:31 | 只看該作者
,Essentially C-indecomposable pω+n-Projective p-Groups,978-3-642-79390-5
43#
發(fā)表于 2025-3-28 22:57:26 | 只看該作者
44#
發(fā)表于 2025-3-29 06:03:55 | 只看該作者
The Divisible and E-Injective Hulls of a Torsion Free Group,978-3-0348-6862-4
45#
發(fā)表于 2025-3-29 09:09:38 | 只看該作者
46#
發(fā)表于 2025-3-29 15:06:06 | 只看該作者
https://doi.org/10.1007/978-3-658-06957-5ential homomorphisms only for any i ≠ j ∈ p. Naturally, we want ρ to be as large as possible which is ρ = 2. . In all “classical cases” we derived ρ = 2. , but it would be much nicer to obtain ρ = 2. without any restrictions as assumed in [CG], Theorem 5.2(b). The following theorem will settle this problem which will be our main result.
47#
發(fā)表于 2025-3-29 17:44:02 | 只看該作者
,7. Kapitel V?lkerschlachtdenkmal,tion 3.5] to arbitrary homogeneous groups by showing that a homogeneous torsionfree group is Butler if and only if it is completely decomposable. The main tool in this direction is a slight modification of Griffith’s proof [9] of the freeness of Baer’s
48#
發(fā)表于 2025-3-29 20:01:31 | 只看該作者
49#
發(fā)表于 2025-3-30 03:28:27 | 只看該作者
https://doi.org/10.1007/978-3-658-06957-5n the proofs we utilize two results: the first reduces the global problem to endomorphism rings of local groups; the second, a local theorem, classifies isomorphisms of endomorphism rings of local groups. The bulk of the proofs are then devoted to relating such isomorphisms to p-indicators.
50#
發(fā)表于 2025-3-30 06:54:42 | 只看該作者
https://doi.org/10.1007/978-3-531-19990-0have done to carry on and complete the work they started. Moreover, it may be beneficial for us to examine methods and techniques that have developed over this period and to analyse those in current use. Finally, we consider a few open problems and discuss briefly directions for future research.
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-23 04:17
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
天峻县| 合川市| 沅陵县| 洪江市| 石台县| 禄劝| 沐川县| 杨浦区| 甘泉县| 济南市| 台中县| 庐江县| 旺苍县| 伊金霍洛旗| 璧山县| 丹凤县| 射阳县| 株洲县| 民和| 静乐县| 沅江市| 碌曲县| 七台河市| 喜德县| 南郑县| 前郭尔| 锡林浩特市| 沧州市| 进贤县| 桂平市| 南雄市| 申扎县| 沾益县| 修文县| 通城县| 肇庆市| 镇康县| 安龙县| 光山县| 宜丰县| 福鼎市|