找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Abductive Reasoning and Learning; Dov M. Gabbay,Rudolf Kruse Book 2000 Springer Science+Business Media Dordrecht 2000 C programming langua

[復(fù)制鏈接]
查看: 25572|回復(fù): 43
樓主
發(fā)表于 2025-3-21 17:02:59 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
期刊全稱Abductive Reasoning and Learning
影響因子2023Dov M. Gabbay,Rudolf Kruse
視頻videohttp://file.papertrans.cn/144/143121/143121.mp4
學(xué)科分類Handbook of Defeasible Reasoning and Uncertainty Management Systems
圖書(shū)封面Titlebook: Abductive Reasoning and Learning;  Dov M. Gabbay,Rudolf Kruse Book 2000 Springer Science+Business Media Dordrecht 2000 C programming langua
影響因子This book contains leading survey papers on the various aspectsof Abduction, both logical and numerical approaches. Abduction iscentral to all areas of applied reasoning, including artificialintelligence, philosophy of science, machine learning, data mining anddecision theory, as well as logic itself.
Pindex Book 2000
The information of publication is updating

書(shū)目名稱Abductive Reasoning and Learning影響因子(影響力)




書(shū)目名稱Abductive Reasoning and Learning影響因子(影響力)學(xué)科排名




書(shū)目名稱Abductive Reasoning and Learning網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱Abductive Reasoning and Learning網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱Abductive Reasoning and Learning被引頻次




書(shū)目名稱Abductive Reasoning and Learning被引頻次學(xué)科排名




書(shū)目名稱Abductive Reasoning and Learning年度引用




書(shū)目名稱Abductive Reasoning and Learning年度引用學(xué)科排名




書(shū)目名稱Abductive Reasoning and Learning讀者反饋




書(shū)目名稱Abductive Reasoning and Learning讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-22 00:06:47 | 只看該作者
https://doi.org/10.1007/978-3-322-84117-9the notions of observation and explanation (see for instance [Bergadano and Besnark, 1994]). We build on the general notions developed in the introductory Chapter, taking what was labeled there as the . view, in the sense that we isolate the differences between abduction and induction based on syntactic considerations.
板凳
發(fā)表于 2025-3-22 03:41:27 | 只看該作者
https://doi.org/10.1007/978-3-211-75797-0he current knowledge of the world as input statements and the learned or abduced hypotheses as output statements.. In the case of learning from examples, which is the most common form of learning studied in artificial intelligence, this form of reasoning is called induction, and that is the term we will be mostly using in this chapter.
地板
發(fā)表于 2025-3-22 04:37:00 | 只看該作者
Architektur in Dresden 1800 – 1900ctive tasks such as program synthesis from examples of input-output behaviour and knowledge discovery in databases, and the application of inductive methods to artificial intelligence problems is an active research area, which has displayed considerable progress over the last decades.
5#
發(fā)表于 2025-3-22 12:11:36 | 只看該作者
Architektur in München Seit 1900y but we are using a data set, containing instances of the variables in the domain, to estimate them, the task of learning the graphical structure can be considered as a kind of abductive reasoning, because we are trying to find the most adequate structure given the data, i.e., the structure that best explains the observations.
6#
發(fā)表于 2025-3-22 16:40:46 | 只看該作者
7#
發(fā)表于 2025-3-22 19:12:10 | 只看該作者
Learning from Data: Possibilistic Graphical Models978-3-658-00437-8
8#
發(fā)表于 2025-3-23 01:10:19 | 只看該作者
Christoph Wiesmayr,Bernhard Gilli, although considered by many authors (e.g., [Pólya, 19681), has not been given any logical or numerical formalization until recently, if we except the Bayesian model (which requires more information and where we compute the a posteriori probability of disorders on the basis of observations), and so
9#
發(fā)表于 2025-3-23 04:46:43 | 只看該作者
Architektur in München Seit 1900artificial intelligence, database theory, graph theory, and operations research are connected with decomposition problems, very few general results have been established so far. In the field of graphical modeling and its widespread application areas in diagnostics, expert systems, KDD systems, plann
10#
發(fā)表于 2025-3-23 08:20:45 | 只看該作者
Logical Characterisations of Inductive Learningtwicklung die Ungleichheit bei der Inanspruchnahme von Gesundheitsleistungen steigt und damit Wertvorstellungen verletzt werden, auf denen Gesundheitssysteme basieren. Das dürfte für nationale Gesundheitssysteme eine st?rkere Belastung darstellen als für gegens?tzliche Krankenversicherungssysteme, d
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-19 02:59
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
阿瓦提县| 大冶市| 安国市| 邵阳县| 红安县| 临夏县| 会东县| 密云县| 长治市| 临夏市| 开原市| 达孜县| 平遥县| 广东省| 大同县| 南部县| 长岭县| 防城港市| 汝南县| 扶余县| 淮滨县| 汉中市| 淳安县| 洛浦县| 金寨县| 青神县| 西城区| 靖宇县| 全南县| 衡南县| 鄯善县| 丰顺县| 荥经县| 达尔| 伊金霍洛旗| 万盛区| 凤山市| 鄯善县| 比如县| 迁安市| 佛学|