找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: A Variational Theory of Convolution-Type Functionals; Roberto Alicandro,Nadia Ansini,Antonio Tribuzio Book 2023 The Editor(s) (if applicab

[復(fù)制鏈接]
樓主: Conformist
31#
發(fā)表于 2025-3-26 22:21:24 | 只看該作者
Roberto Alicandro,Nadia Ansini,Antonio TribuzioGives an abstract framework for a comprehensive theory of convolution-type functionals.Provides an environment and technical tools to frame problems related to multiple-scale variational models.Introd
32#
發(fā)表于 2025-3-27 02:49:08 | 只看該作者
SpringerBriefs on PDEs and Data Sciencehttp://image.papertrans.cn/a/image/142565.jpg
33#
發(fā)表于 2025-3-27 06:40:05 | 只看該作者
Chemotherapeutica zur lokalen AnwendungIn this chapter we formalize the assumptions on our families of convolution-type functionals. Such assumptions are stated in terms of some growth and integrability conditions. We explain and comment these hypotheses comparing them with the corresponding assumptions for families of local integral functionals commonly used in the literature.
34#
發(fā)表于 2025-3-27 11:17:25 | 只看該作者
Antioxidants/Antimutagens in FoodsThe main result of this chapter is a compactness and integral-representation result for the Γ-limits of the families {.(?, .)}., which we can obtain through a convolution version of the localization method of Γ-convergence. A key point is that it is possible to limit the analysis to finite-range convolutions through a truncation argument.
35#
發(fā)表于 2025-3-27 14:11:05 | 只看該作者
36#
發(fā)表于 2025-3-27 21:22:30 | 只看該作者
37#
發(fā)表于 2025-3-28 01:45:37 | 只看該作者
38#
發(fā)表于 2025-3-28 04:04:12 | 只看該作者
39#
發(fā)表于 2025-3-28 07:35:57 | 只看該作者
M. Nagao,K. Wakabayashi,Y. Suwa,T. Kobayashis. The limit energy density is characterized by an asymptotic nonlocal homogenization formula, which reduces to a non-local cell-problem formula when the energy density is convex in the last variable. In the case of homogeneous integrands the homogenization formula simplify only in the convex case.
40#
發(fā)表于 2025-3-28 14:19:47 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 21:40
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
东乡县| 军事| 汝州市| 洛扎县| 新野县| 遂溪县| 贵港市| 永善县| 营山县| 曲松县| 枣阳市| 长泰县| 浦城县| 岳西县| 子长县| 玛多县| 清河县| 栾城县| 揭西县| 府谷县| 同仁县| 福海县| 高安市| 临猗县| 日喀则市| 南充市| 屏边| 茂名市| 龙泉市| 盐亭县| 临沂市| 宜君县| 海宁市| 富锦市| 禄劝| 富宁县| 延庆县| 娱乐| 清远市| 独山县| 金乡县|