找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: A Multiple-Testing Approach to the Multivariate Behrens-Fisher Problem; with Simulations and Tejas Desai Book 2013 The Author 2013 Fisher-B

[復(fù)制鏈接]
樓主: 故障
11#
發(fā)表于 2025-3-23 11:54:08 | 只看該作者
Front Matterto a specific biological functional unit (such as chlorophyll or an enzyme), in addition to transport across a membrane (absorption). The problem of uptake of elements has many facets. Absorption entails the movement of molecules from one location to another across a boundary. The boundary can be a
12#
發(fā)表于 2025-3-23 16:03:58 | 只看該作者
13#
發(fā)表于 2025-3-23 19:35:02 | 只看該作者
14#
發(fā)表于 2025-3-23 23:45:23 | 只看該作者
15#
發(fā)表于 2025-3-24 05:11:56 | 只看該作者
2191-544X tatistical problem ?.Includes supplementary material: ??? ? ?In statistics, the Behrens–Fisher problem is the problem of interval estimation and hypothesis testing concerning the difference between the means of two normally distributed populations when the variances of the two populations are not as
16#
發(fā)表于 2025-3-24 09:18:54 | 只看該作者
17#
發(fā)表于 2025-3-24 12:08:01 | 只看該作者
Book 2013ans of two normally distributed populations when the variances of the two populations are not assumed to be equal, based on two independent samples.?In his 1935 paper, Fisher outlined an ?approach to the Behrens-Fisher problem. ?Since high-speed computers were not available in Fisher’s time, this ap
18#
發(fā)表于 2025-3-24 15:14:40 | 只看該作者
https://doi.org/10.1007/978-3-319-22105-2tic MANOVA problem to which all the three approaches are applied. For the .-sample ANOVA problem, . > 2, and for the heteroscedastic MANOVA problem, we use the FDR algorithm. Type I errors and power for each method are also presented. Finally, two examples are also presented.
19#
發(fā)表于 2025-3-24 19:32:02 | 只看該作者
Book 2013problem. ?We start out by presenting ?a test of multivariate normality, proceed to test(s) of equality of covariance matrices, and end with our solution to the multivariate Behrens-Fisher problem. All methods proposed in this monograph will be include both the randomly-incomplete-data case as well a
20#
發(fā)表于 2025-3-25 01:24:05 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-29 01:07
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
锦屏县| 思茅市| 丰都县| 抚州市| 日照市| 冷水江市| 武冈市| 嘉荫县| 宁陕县| 山阳县| 东至县| 甘孜县| 牡丹江市| 贵溪市| 萝北县| 云阳县| 陇南市| 武汉市| 疏附县| 通河县| 黄石市| 宁明县| 军事| 湟源县| 开化县| 海原县| 苏尼特左旗| 花垣县| 应城市| 瓮安县| 甘谷县| 手游| 孝昌县| 柘荣县| 石林| 额尔古纳市| 云阳县| 伊春市| 犍为县| 广南县| 宁阳县|